Skip to main content

Advertisement

Log in

Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To acquire iron, all species have to overcome the problems of iron insolubility and toxicity. In response to low iron availability in the environment, most fungi excrete ferric iron-specific chelators—siderophores—to mobilize this metal. Siderophore-bound iron is subsequently utilized via the reductive iron assimilatory system or uptake of the siderophore-iron complex. Furthermore, most fungi possess intracellular siderophores as iron storage compounds. Molecular analysis of siderophore biosynthesis was initiated by pioneering studies on the basidiomycete Ustilago maydis, and has progressed recently by characterization of the relevant structural and regulatory genes in the ascomycetes Aspergillus nidulans and Neurospora crassa. In addition, significant advances in the understanding of utilization of siderophore-bound iron have been made recently in the yeasts Saccharomyces cerevisiae and Candida albicans as well as in the filamentous fungus A. nidulans. The present review summarizes molecular details of fungal siderophore biosynthesis and uptake, and the regulatory mechanisms involved in control of the corresponding genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A, B.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Adjimani JP, Emery T (1987) Iron uptake in Mycelia sterilia EP-76. J Bacteriol 169:3664–3668

    CAS  PubMed  Google Scholar 

  • An Z, Mei B, Yuan WM, Leong SA (1997a) The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor. EMBO J 16:1742–1750

    Article  CAS  PubMed  Google Scholar 

  • An Z, Zhao Q, McEvoy J, Yuan WM, Markley JL, Leong SA (1997b) The second finger of Urbs1 is required for iron-mediated repression of sid1 in Ustilago maydis. Proc Natl Acad Sci USA 94:5882–5887

    Article  CAS  PubMed  Google Scholar 

  • Ardon O, Nudelman R, Caris C, Libman J, Shanzer A, Chen Y, Hadar Y (1998) Iron uptake in Ustilago maydis: tracking the iron path. J Bacteriol 180:2021–2026

    CAS  PubMed  Google Scholar 

  • Ardon O, Bussey H, Philpott C, Ward DM, Davis-Kaplan S, Verroneau S, Jiang B, Kaplan J (2001) Identification of a Candida albicans ferrichrome transporter and its characterization by expression in Saccharomyces cerevisiae. J Biol Chem 276:43049–43055

    Article  CAS  PubMed  Google Scholar 

  • Askwith C, Kaplan J (1997) An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J Biol Chem 272:401–405

    Article  CAS  PubMed  Google Scholar 

  • Askwith CC, de Silva D, Kaplan J (1996) Molecular biology of iron acquisition in Saccharomyces cerevisiae. Mol Microbiol 20:27–34

    CAS  PubMed  Google Scholar 

  • Blaiseau PL, Lesuisse E, Camadro JM (2001) Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. J Biol Chem 276:34221–34226

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Langfelder K (2002) Menacing mold: the molecular biology of Aspergillus fumigatus. Annu Rev Microbiol 56:433–455

    Article  CAS  PubMed  Google Scholar 

  • Brickman TJ, McIntosh MA (1992) Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J Biol Chem 267:12350–12355

    CAS  PubMed  Google Scholar 

  • Burt WR (1982) Identification of coprogen B and its breakdown products from Histoplasma capsulatum. Infect Immun 35:990–996

    CAS  PubMed  Google Scholar 

  • Carrano CJ, Raymond KN (1978) Coordination chemistry of microbial iron transport compounds: rhodotorulic acid and iron uptake in Rhodotorula pilimanae. J Bacteriol 136:69–74

    CAS  PubMed  Google Scholar 

  • Casas C, Aldea M, Espinet C, Gallego C, Gil R, Herrero E (1997) The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae. Yeast 13:621–637

    Article  CAS  PubMed  Google Scholar 

  • Charlang G, Ng B, Horowitz NH, Horowitz RM (1981) Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Mol Cell Biol 1:94–100

    CAS  PubMed  Google Scholar 

  • Chung YS, Chae K-S, Han DM, Jahng K-Y (1996) Chemical composition and structure of hyphal wall of null-pigment mutants of Aspergillus nidulans. Mol Cells 6:731–736

    CAS  Google Scholar 

  • Corson LB, Folmer J, Strain JJ, Culotta VC, Cleveland DW (1999) Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu,Zn-superoxide dismutase. J Biol Chem 274:27590–27596

    Article  CAS  PubMed  Google Scholar 

  • Dancis A, Klausner RD, Hinnebusch AG, Barriocanal JG (1990) Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10:2294–2301

    CAS  PubMed  Google Scholar 

  • Dancis A, Roman DG, Anderson GJ, Hinnebusch AG, Klausner RD (1992) Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci USA 89:3869–3873

    CAS  PubMed  Google Scholar 

  • Davis RH (1986) Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisiae. Microbiol Rev 50:280–313

    CAS  PubMed  Google Scholar 

  • De Luca NG, Wood PM (2000) Iron uptake by fungi: contrasted mechanisms with internal or external reduction. Adv Microb Physiol 43:39–74

    PubMed  Google Scholar 

  • Eck R, Hundt S, Hartl A, Roemer E, Kunkel W (1999) A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology 145:2415–2422

    CAS  PubMed  Google Scholar 

  • Ecker DJ, Emery T (1983) Iron uptake from ferrichrome A and iron citrate in Ustilago sphaerogena. J Bacteriol 155:616–622

    CAS  PubMed  Google Scholar 

  • Eide DJ (2000) Metal ion transport in eukaryotic microorganisms: insights from Saccharomyces cerevisiae. Adv Microb Physiol 43:1–38

    CAS  PubMed  Google Scholar 

  • Eide DJ, Bridgham JT, Zhao Z, Mattoon JR (1993) The vacuolar H(+)-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol Gen Genet 241:447–456

    CAS  PubMed  Google Scholar 

  • Eisendle M, Oberegger H, Zadra I, Haas H (2003) The siderophor system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N5-monooxygenase (sidA) and a nonribosomal peptide synthetase (sidC). Mol Microbiol (in press)

  • Emery T (1971) Role of ferrichrome as a ferric ionophore in Ustilago sphaerogena. Biochemistry 10:1483–1488

    CAS  PubMed  Google Scholar 

  • Emery T (1976) Fungal ornithine esterases: relationship to iron transport. Biochemistry 15:2723–2728

    CAS  PubMed  Google Scholar 

  • Ernst JF, Winkelmann G (1977) Enzymatic release of iron from sideramines in fungi. NADH:sideramine oxidoreductase in Neurospora crassa. Biochim Biophys Acta 500:27–41

    Article  CAS  PubMed  Google Scholar 

  • Fedorovich D, Protchenko O, Lesuisse E (1999) Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes. Biometals 12:295–300

    Article  CAS  PubMed  Google Scholar 

  • Fiedler HP, Krastel P, Muller J, Gebhardt K, Zeeck A (2001) Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett 115:125–130

    Google Scholar 

  • Foury F, Roganti T (2002) Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J Biol Chem 277:24475–24483

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    CAS  PubMed  Google Scholar 

  • Gardner PR, Fridovich I (1992) Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267:8757–8763

    CAS  PubMed  Google Scholar 

  • Garland SA, Hoff K, Vickery LE, Culotta VC (1999) Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J Mol Biol 294:897–907

    Article  PubMed  Google Scholar 

  • Georgatsou E, Alexandraki D (1999) Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes. Yeast 15:573–584

    Article  CAS  PubMed  Google Scholar 

  • Haas H, Angermayr K, Stoffler G (1997) Molecular analysis of a Penicillium chrysogenum GATA factor encoding gene (sreP) exhibiting significant homology to the Ustilago maydis urbs1 gene. Gene 184:33–37

    Article  CAS  PubMed  Google Scholar 

  • Haas H, Zadra I, Stoffler G, Angermayr K (1999) The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem 274:4613–4619

    CAS  PubMed  Google Scholar 

  • Haas H, Schoeser M, Lesuisse E, Ernst JF, Parson W, Abt B, Winkelmann G, Oberegger H (2003) Characterisation of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. Biochem J 371:505–513

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    CAS  PubMed  Google Scholar 

  • Harrison KA, Marzluf GA (2002) Characterization of DNA binding and the cysteine rich region of SRE, a GATA factor in Neurospora crassa involved in siderophore synthesis. Biochemistry 41:15288–15295

    Article  CAS  PubMed  Google Scholar 

  • Haselwandter K (1995) Mycorrhizal fungi: siderophore production. Crit Rev Biotechnol 15:287–291

    CAS  Google Scholar 

  • Haselwandter K, Winkelmann G (2002) Ferricrocin—an ectomycorrhizal siderophore of Cenococcum geophilum. Biometals 15:73–77

    Article  CAS  PubMed  Google Scholar 

  • Herrero M, de Lorenzo V, Neilands JB (1988) Nucleotide sequence of the iucD gene of the pColV-K30 aerobactin operon and topology of its product studied with phoA and lacZ gene fusions. J Bacteriol 170:56–64

    CAS  PubMed  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G (1999) Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. Biometals 12:301–306

    Article  CAS  PubMed  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G (2000a) A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae. Biometals 13:65–72

    Article  CAS  PubMed  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G (2000b) Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiol Lett 186:221–227

    Article  CAS  PubMed  Google Scholar 

  • Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF (2002) The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun 70:5246–5255

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF (1995) The ABC of channel regulation. Cell 82:693–696

    CAS  PubMed  Google Scholar 

  • Hoe KL, Won MS, Yoo OJ, Yoo HS (1996) Molecular cloning of GAF2, a Schizosaccharomyces pombe GATA factor, which has two zinc-finger sequences. Biochem Mol Biol Int 39:127–135

    CAS  PubMed  Google Scholar 

  • Holzberg M, Artis WM (1983) Hydroxamate siderophore production by opportunistic and systemic fungal pathogens. Infect Immun 40:1134–1139

    CAS  PubMed  Google Scholar 

  • Hordt W, Romheld V, Winkelmann G (2000) Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants. Biometals 13:37–46

    Article  CAS  PubMed  Google Scholar 

  • Horowitz NH, Charlang G, Horn G, Williams NP (1976) Isolation and identification of the conidial germination factor of Neurospora crassa. J Bacteriol 127:135–140

    CAS  PubMed  Google Scholar 

  • Howard DH (1999) Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev 12:394–404

    CAS  PubMed  Google Scholar 

  • Hu CJ, Bai C, Zheng XD, Wang YM, Wang Y (2002) Characterization and functional analysis of the siderophore-Fe transporter CaArn1p in Candida albicans. J Biol Chem 277:30598–30605

    Article  CAS  PubMed  Google Scholar 

  • Ismail A, Bedell GW, Lupan DM (1985) Siderophore production by the pathogenic yeast, Candida albicans. Biochem Biophys Res Commun 130:885–891

    Google Scholar 

  • Jensen LT, Culotta VC (2002) Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron. J Mol Biol 318:251–260

    Article  CAS  PubMed  Google Scholar 

  • Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146:2435–2445

    CAS  PubMed  Google Scholar 

  • Kim Y, Yun CW, Philpott CC (2002) Ferrichrome induces endosome to plasma membrane cycling of the ferrichrome transporter, Arn1p, in Saccharomyces cerevisiae. EMBO J 21:3632–3642

    Article  CAS  PubMed  Google Scholar 

  • Kleinkauf H, Von Dohren H (1996) A nonribosomal system of peptide biosynthesis. Eur J Biochem 236:335–351

    CAS  PubMed  Google Scholar 

  • Knight SA, Lesuisse E, Stearman R, Klausner RD, Dancis A (2002) Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology 148:29–40

    CAS  PubMed  Google Scholar 

  • Kosman DJ (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47:1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Latge JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350

    PubMed  Google Scholar 

  • Leong SA, Winkelmann G (1998) Molecular biology of iron transport in fungi. Met Ions Biol Syst 35:147–186

    CAS  PubMed  Google Scholar 

  • Lesuisse E, Labbe P (1989) Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. J Gen Microbiol 135:257–263

    CAS  PubMed  Google Scholar 

  • Lesuisse E, Casteras-Simon M, Labbe P (1995) Ferrireductase activity in Saccharomyces cerevisiae and other fungi: colorimetric assays on agar plates. Anal Biochem 226:375–377

    Article  CAS  PubMed  Google Scholar 

  • Lesuisse E, Simon-Casteras M, Labbe P (1998) Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144:3455–3462

    CAS  Google Scholar 

  • Lesuisse E, Blaiseau PL, Dancis A, Camadro JM (2001) Siderophore uptake and use by the yeast Saccharomyces cerevisiae. Microbiology 147:289–298

    CAS  PubMed  Google Scholar 

  • Lesuisse E, Knight SA, Camadro JM, Dancis A (2002) Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Yeast 19:329–340

    Article  CAS  PubMed  Google Scholar 

  • Li L, Chen OS, McVey Ward D, Kaplan J (2001) CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276:29515–29519

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Dunlap JC (1996) Isolation and analysis of the arg-13 gene of Neurospora crassa. Genetics 143:1163–1174

    CAS  PubMed  Google Scholar 

  • Martins LJ, Jensen LT, Simon JR, Keller GL, Winge DR, Simons JR (1998) Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273:23716–23721

    Article  CAS  PubMed  Google Scholar 

  • Matzanke BF (1994) Iron storage in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Decker, New York, pp 179–213

  • Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1987) Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus. J Bacteriol 169:5873–5876

    CAS  PubMed  Google Scholar 

  • Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1988) Ferricrocin functions as the main intracellular iron-storage compound in mycelia of Neurospora crassa. Biol Met 1:18–25

    CAS  PubMed  Google Scholar 

  • Mei B, Budde AD, Leong SA (1993) sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc Natl Acad Sci USA 90:903–907

    CAS  PubMed  Google Scholar 

  • Mootz HD, Schorgendorfer K, Marahiel MA (2002) Functional characterization of 4′-phosphopantetheinyl transferase genes of bacterial and fungal origin by complementation of Saccharomyces cerevisiae lys5. FEMS Microbiol Lett 213:51–57

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JA, Williams PH, Cashmore AM (1996) Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. Microbiology 142:485–492

    CAS  PubMed  Google Scholar 

  • Muller G, Barclay SJ, Raymond KN (1985) The mechanism and specificity of iron transport in Rhodotorula pilimanae probed by synthetic analogs of rhodotorulic acid. J Biol Chem 260:13916–13920

    CAS  PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    CAS  PubMed  Google Scholar 

  • Neilands JB, Konopka K, Schwyn B, Coy M, Francis RT, Paw BH, Bagg A (1987) Comparative biochemistry of microbial iron assimilation. In: Winkelmann G, Winge DR (eds) Iron transport in microbes, plants and animals. VCH Weinheim, New York, pp 3–34

  • Nilius AM, Farmer SG (1990) Identification of extracellular siderophores of pathogenic strains of Aspergillus fumigatus. J Med Vet Mycol 28:395–403

    CAS  PubMed  Google Scholar 

  • Nyhus KJ, Jacobson ES (1999) Genetic and physiologic characterization of ferric/cupric reductase constitutive mutants of Cryptococcus neoformans. Infect Immun 67:2357–2365

    CAS  PubMed  Google Scholar 

  • Oberegger H, Zadra I, Schoeser M, Haas H (2000) Iron starvation leads to increased expression of Cu/Zn-superoxide dismutase in Aspergillus. FEBS Lett 485:113–116

    Article  CAS  PubMed  Google Scholar 

  • Oberegger H, Schoeser M, Zadra I, Abt B, Haas H (2001) SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol Microbiol 41:1077–1089

    Article  CAS  PubMed  Google Scholar 

  • Oberegger H, Schoeser M, Zadra I, Schrettl M, Parson W, Haas H (2002a) Regulation of freA, acoA, lysF and cycA expression by iron availability in Aspergillus nidulans. Appl Environ Microbiol 68:5769–5772

    CAS  PubMed  Google Scholar 

  • Oberegger H, Zadra I, Schoeser M, Abt B, Parson W, Haas H (2002b) Identification of members of the Aspergillus nidulans SREA regulon: genes involved in siderophore biosynthesis and utilization. Biochem Soc Trans 30:781–783

    CAS  PubMed  Google Scholar 

  • Ong DE, Emery TF (1972) Ferrichrome biosynthesis: enzyme catalyzed formation of the hydroxamic acid group. Arch Biochem Biophys 148:77–83

    CAS  PubMed  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  Google Scholar 

  • Pelletier B, Beaudoin J, Mukai Y, Labbe S (2002) Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe. J Biol Chem 277:22950–29958

    Article  CAS  PubMed  Google Scholar 

  • Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5:496–501

    Article  CAS  PubMed  Google Scholar 

  • Philpott CC, Rashford J, Yamaguchi-Iwai Y, Rouault TA, Dancis A, Klausner RD (1998) Cell-cycle arrest and inhibition of G1 cyclin translation by iron in AFT1-1(up) yeast. EMBO J 17:5026–5036

    Article  CAS  PubMed  Google Scholar 

  • Plattner HJ, Diekmann H (1994) Enzymology of siderophore biosynthesis in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Decker, New York, pp 99–117

  • Portnoy ME, Jensen LT, Culotta VC (2002) The distinct methods by which manganese and iron regulate the Nramp transporters in yeast. Biochem J 362:119–124

    Article  CAS  PubMed  Google Scholar 

  • Raguzzi F, Lesuisse E, Crichton RR (1988) Iron storage in Saccharomyces cerevisiae. FEBS Lett 231:253–258

    Article  CAS  PubMed  Google Scholar 

  • Ramanan N, Wang Y (2000) A high-affinity iron permease essential for Candida albicans virulence. Science 288:1062–1064

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941

    Article  CAS  PubMed  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  • Robertson LS, Causton HC, Young RA, Fink GR (2000) The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci USA 97:5984–5988

    CAS  PubMed  Google Scholar 

  • Roosenberg JM, Lin YM, Lu Y, Miller MJ (2000) Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem 7:159–197

    CAS  PubMed  Google Scholar 

  • Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR (2001) A second iron-regulatory system in yeast independent of Aft1p. Proc Natl Acad Sci USA 98:14322–14327

    Article  CAS  PubMed  Google Scholar 

  • Scazzocchio C (2000) The fungal GATA factors. Curr Opin Microbiol 3:126–131

    CAS  PubMed  Google Scholar 

  • Smith RL, Johnson AD (2000) Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25:325–330

    Article  CAS  PubMed  Google Scholar 

  • Stadler JA, Schweyen RJ (2002) The yeast iron regulon is induced upon cobalt stress and crucial for cobalt tolerance. J Biol Chem 277:39649–39654

    Article  CAS  PubMed  Google Scholar 

  • Straka JG, Emery T (1979) The role of ferrichrome reductase in iron metabolism of Ustilago sphaerogena. Biochim Biophys Acta 569:277–286

    Article  CAS  PubMed  Google Scholar 

  • Szczypka MS, Zhu Z, Silar P, Thiele DJ (1997) Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription. Yeast 13:1423–1435

    Article  CAS  PubMed  Google Scholar 

  • Timmerman MM, Woods JP (1999) Ferric reduction is a potential iron acquisition mechanism for Histoplasma capsulatum. Infect Immun 67:6403–6408

    CAS  PubMed  Google Scholar 

  • Urbanowski JL, Piper RC (1999) The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. J Biol Chem 274:38061–38070

    Article  CAS  PubMed  Google Scholar 

  • Van der Helm D, Winkelmann G (1994): Hydroxamates and polycarbonates as iron transport agents (siderophores) in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Decker, New York, pp 39–148

  • Van Ho A, McVey Ward D, Kaplan J (2002) Transition metal transport in yeast. Annu Rev Microbiol 56:237–261

    Article  PubMed  Google Scholar 

  • Visca P, Ciervo A, Orsi N (1994) Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme l-ornithine N5-oxygenase in Pseudomonas aeruginosa. J Bacteriol 176:1128–1140

    CAS  PubMed  Google Scholar 

  • Voisard C, Wang J, McEvoy JL, Xu P, Leong SA (1993) urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol Cell Biol 13:7091–7100

    CAS  PubMed  Google Scholar 

  • Waters BM, Eide DJ (2002) Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen. J Biol Chem 277:33749–33757

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Marahiel MA (2001) Exploring the domain structure of modular nonribosomal peptide synthetases. Structure (Cambridge) 9:R3–R9

    Google Scholar 

  • Weinberg ED (1993) The development of awareness of iron-withholding defense. Perspect Biol Med 36:215–221

    CAS  PubMed  Google Scholar 

  • Weinberg ED (1999) The role of iron in protozoan and fungal infectious diseases. J Eukaryot Microbiol 46:231–238

    CAS  PubMed  Google Scholar 

  • Weissman Z, Shemer R, Kornitzer D (2002) Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol Microbiol 44:1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868

    Article  CAS  PubMed  Google Scholar 

  • Wilhite SE, Lumsden RD, Straney DC (2001) Peptide synthetase gene in Trichoderma virens. Appl Environ Microbiol 67:5055–5062

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann G (1993) Kinetics, energetics, and mechanisms of siderophore iron transport in fungi. In: Barton LL, Hemmings BC (eds) Iron chelation in plants and soil microorganisms. Academic Press, New York, pp 219–239

  • Winkelmann G (2001) Siderophore transport in fungi. In: Winkelmann G (ed) Microbial transport systems. Wiley-VCH, Weinheim

  • Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 30:691–696

    CAS  PubMed  Google Scholar 

  • Yamada O, Nan SN, Akao T, Tominaga M, Watanabe H, Satoh T, Enei H, Akita O (2003) dffA gene of Aspergillus oryzae encodes l-ornithine N5-oxygenase and is indispensable for deferriferrchrysin biosynthesis. J Biosci Bioeng 95:82–88

    Article  CAS  Google Scholar 

  • Yamaguchi-Iwai Y, Dancis A, Klausner RD (1995) AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14:1231–1239

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD (1996) Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J 15:3377–3384

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Iwai Y, Ueta R, Fukunaka A, Sasaki R (2002) Subcellular localization of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. J Biol Chem 277:18914–18918

    Article  CAS  PubMed  Google Scholar 

  • Yuan WM, Gentil GD, Budde AD, Leong SA (2001) Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. J Bacteriol 183:4040–4051

    Article  CAS  PubMed  Google Scholar 

  • Yun CW, Ferea T, Rashford J, Ardon O, Brown PO, Botstein D, Kaplan J, Philpott CC (2000a) Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J Biol Chem 275:10709–10715

    Article  CAS  PubMed  Google Scholar 

  • Yun CW, Tiedeman JS, Moore RE, Philpott CC (2000b) Siderophore-iron uptake in Saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. J Biol Chem 275:16354–16359

    Article  CAS  PubMed  Google Scholar 

  • Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC (2001) The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem 276:10218–10223

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Marzluf GA (1999) Functional analysis of the two zinc fingers of SRE, a GATA-type factor that negatively regulates siderophore synthesis in Neurospora crassa. Biochemistry 38:4335–4341

    Article  CAS  PubMed  Google Scholar 

  • Zhou LW, Haas H, Marzluf GA (1998) Isolation and characterization of a new gene, sre, which encodes a GATA- type regulatory protein that controls iron transport in Neurospora crassa. Mol Gen Genet 259:532–540

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to Cereon Genomics LLC (Cambridge, Mass.), the Whitehead Institute/MIT Center for Genome Research, the Stanford Genome Technology Center, and the Sanger Institute and its collaborators, David Denning and Andrew Brass at the University of Manchester for access to the genome sequences of A. nidulans, N. crassa, C. albicans and A. fumigatus, respectively. Research on the iron metabolism of fungi in the author's laboratory was supported by the Austrian Science Foundation (FWF-P13202-MOB), the Austrian National Bank (OENB-8750) and the University of Innsbruck. Contributions by various members of the laboratory are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, H. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62, 316–330 (2003). https://doi.org/10.1007/s00253-003-1335-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1335-2

Keywords

Navigation