Skip to main content
Log in

Identification of factors impeding the production of a single-chain antibody fragment in Escherichia coli by comparing in vivo and in vitro expression

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The atrazine-specific single-chain variable antibody fragments (scFv) K411B was produced by expression in either the cytoplasm or the periplasm of Escherichia coli BL21(DE3). For periplasmic production, the pelB leader was N-terminally fused to scFv, whereas the unfused variant resulted in cytoplasmic expression. The extent of protein accumulation differed significantly. Expression of scFv with leader was 2.3 times higher than that of the protein without leader. This was further investigated by generating the respective translation profiles using coupled in vitro transcription/translation assays, the results of which were in agreement. This comparative approach was also applied to functionality: Periplasmic expression and in vitro expression resulted in only 10% correctly folded scFv, indicating that the oxidizing environment of the periplasm did not increase proper folding. Thus, the data obtained in vitro confirmed the findings observed in vivo and suggested that the discrepancy in expression levels was due to different translation efficiencies. However, the in vivo production of scFv with enhanced green fluorescent protein (EGFP) fused C-terminally (scFv-EGFP) was only successful in the cytoplasm, although in vitro the expression with and without the leader rendered the same production profile as for scFv. This indicated that neither the translation efficiency nor the solubility but other factors impeded periplasmic expression of the fusion protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A, B.
Fig. 5.

Similar content being viewed by others

References

  • Arnold S, Siemann M, Scharnweber K, Werner M, Baumann S, Reuss M (2001) Kinetic modeling and simulation of in vitro transcription by phage T7m RNA polymerase. Biotechnol Bioeng 72:548–561

    Article  CAS  PubMed  Google Scholar 

  • Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 96:13703–13708

    CAS  PubMed  Google Scholar 

  • Buchner J, Pastan I, Brinkmann U (1992) A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal Biochem 205:263–270

    CAS  PubMed  Google Scholar 

  • Casey JL, Coley AM, Tilley LM, Foley M (2000) Green fluorescent antibodies: novel in vitro tools. Protein Eng 13:445–452

    Article  CAS  PubMed  Google Scholar 

  • Cha HJ, Wu CF, Valdes JJ, Rao G, Bentley WE (2000) Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: monitoring protein expression and solubility. Biotechnol Bioeng 67:565–574

    CAS  PubMed  Google Scholar 

  • Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86:2172–2175

    CAS  PubMed  Google Scholar 

  • Coull JM, Pappin DJ, Mark J, Aebersold R, Koster H (1991) Functionalized membrane supports for covalent protein microsequence analysis. Anal Biochem 194:110–120

    CAS  PubMed  Google Scholar 

  • Feilmeier BJ, Iseminger G, Schroeder D, Webber H, Phillips GJ (2000) Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 182:4068–4076

    Article  CAS  PubMed  Google Scholar 

  • Georgiou G, Valax P (1996) Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7:190–197

    PubMed  Google Scholar 

  • Goodrow MH, Harrison RO, Hammock BD (1990) Hapten synthesis, antibody development, and competitive inhibition enzyme immunoassay for s-triazine herbicides. J Agric Food Chem 38:990–996

    CAS  Google Scholar 

  • Gren EJ (1984) Recognition of messenger RNA during translational initiation in Escherichia coli. Biochimie 66:1–29

    CAS  PubMed  Google Scholar 

  • Griep RA, van Twisk C, van der Wolf JM, Schots A (1999) Fluobodies: green fluorescent single-chain Fv fusion proteins. J Immunol Methods 230:121–130

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  • Katanaev VL, Spirin AS, Reuss M, Siemann M (1996) Formation of bacteriophage MS2 infectious units in a cell-free translation system. FEBS Lett 397:143–148

    Article  CAS  PubMed  Google Scholar 

  • Kipriyanov SM, Dubel S, Breitling F, Kontermann RE, Heymann S, Little M (1995) Bacterial expression and refolding of single-chain Fv fragments with C-terminal cysteines. Cell Biophys 26:187–204

    CAS  PubMed  Google Scholar 

  • Kramer K, Hock B (1996) Recombinant single-chain antibodies against s-triazines. Food Agric Immunol 8:97–109

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Martineau P, Jones P, Winter G (1998) Expression of an antibody fragment at high levels in the bacterial cytoplasm. J Mol Biol 280:117–127

    Article  CAS  PubMed  Google Scholar 

  • Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    PubMed  Google Scholar 

  • Merk H, Stiege W, Tsumoto K, Kumagai I, Erdmann VA (1999) Cell-free expression of two single-chain monoclonal antibodies against lysozyme: effect of domain arrangement on the expression. J Biochem (Tokyo) 125:328–333

    Google Scholar 

  • Oelschlaeger P, Srikant-Iyer S, Lange S, Schmitt J, Schmid RD (2002) Fluorophor-linked immunosorbent assay: a time- and cost-saving method for the characterization of antibody fragments using a fusion protein of a single-chain antibody fragment and enhanced green fluorescent protein. Anal Biochem 309:27–34

    Article  CAS  PubMed  Google Scholar 

  • Pratt JM (1984) Coupled transcription-translation in prokaryotic cell-free systems. In: Hames BD Higgins SJ (eds) Transcription and translation: a practical approach. IRL, Oxford, pp 179–209

    Google Scholar 

  • Ringquist S, Shinedling S, Barrick D, Green L, Binkley J, Stormo GD, Gold L (1992) Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol 6:1219–1229

    CAS  PubMed  Google Scholar 

  • Ryabova LA, Desplancq D, Spirin AS, Pluckthun A (1997) Functional antibody production using cell-free translation: effects of protein disulfide isomerase and chaperones. Nat Biotechnol 15:79–84

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn, vol 1, Cold Spring Harbor Laboratory, Cold Spring Harbor

  • Sanchez L, Ayala M, Freyre F, Pedroso I, Bell H, Falcon V, Gavilondo JV (1999) High cytoplasmic expression in E. coli, purification, and in vitro refolding of a single chain Fv antibody fragment against the hepatitis B surface antigen. J Biotechnol 72:13–20

    Article  CAS  PubMed  Google Scholar 

  • Schindler PT, Macherhammer F, Arnold S, Reuss M, Siemann M (1999) Investigation of translation dynamics under cell-free protein biosynthesis conditions using high-resolution two-dimensional gel electrophoresis. Electrophoresis 20:806–182

    Article  CAS  PubMed  Google Scholar 

  • Schindler PT, Baumann S, Reuss M, Siemann M (2000) In vitro coupled transcription translation: effects of modification in lysate preparation on protein composition and biosynthesis activity. Electrophoresis 21:2606–2609

    Article  CAS  PubMed  Google Scholar 

  • Stenstrom CM, Holmgren E, Isaksson LA (2001a) Cooperative effects by the initiation codon and its flanking regions on translation initiation. Gene 273:259–265

    Article  CAS  PubMed  Google Scholar 

  • Stenstrom CM, Jin H, Major LL, Tate WP, Isaksson LA (2001b) Codon bias at the 3'-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli. Gene 263:273–284

    Article  CAS  PubMed  Google Scholar 

  • Tavladoraki P, Girotti A, Donini M, Arias FJ, Mancini C, Morea V, Chiaraluce R, Consalvi V, Benvenuto E (1999) A single-chain antibody fragment is functionally expressed in the cytoplasm of both Escherichia coli and transgenic plants. Eur J Biochem 262:617–624

    Article  CAS  PubMed  Google Scholar 

  • Wall JG, Pluckthun A (1995) Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6:507–516

    Article  CAS  PubMed  Google Scholar 

  • Wilms B, Hauck A, Reuss M, Syldatk C, Mattes R, Siemann M, Altenbuchner J (2001) High-cell-density fermentation for production of l-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 73:95–103

    Article  CAS  PubMed  Google Scholar 

  • Wittmann C, Hock B (1989) Improved enzyme immunoassay for the analysis of s-triazines in water samples. Food Agric Immunol 1:211–224

    Google Scholar 

  • Wulfing C, Pluckthun A (1994) Protein folding in the periplasm of Escherichia coli. Mol Microbiol 12:685–692

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sandra Baumann and Kai Scharnweber, Institute of Biochemical Engineering, University of Stuttgart, for their technical assistance in cell-free protein biosynthesis; Volker Noedinger, Institute of Technical Biochemistry, University of Stuttgart, for N-terminal protein sequencing; Dr. Annett Burzlaff, Institute of Cell Biology and Immunology, University of Stuttgart, for technical support with microscopy; and Dr. Karl Kramer and Dr. Berthold Hock, Technical University of Muenchen at Weihenstephan, for the plasmid pCANTAB 5E. Financial support by the "Forschungsschwerpunkt Biosystemtechnik des Landes Baden-Wuerttemberg" is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Schmid.

Additional information

For correspondence with regard to cell-free protein synthesis: Dr. Martin Siemann (e-mail: siemann@ibvt.uni-stuttgart.de, Tel.: +49-711-6855161, Fax: +49-711-6855164)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oelschlaeger, P., Lange, S., Schmitt, J. et al. Identification of factors impeding the production of a single-chain antibody fragment in Escherichia coli by comparing in vivo and in vitro expression. Appl Microbiol Biotechnol 61, 123–132 (2003). https://doi.org/10.1007/s00253-002-1190-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-002-1190-6

Keywords

Navigation