Skip to main content
Log in

Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes

Immunogenetics Aims and scope Submit manuscript

Abstract

Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alsop AE, Miethke P, Rofe R, Koina E, Sankovic N, Deakin JE, Haines H, Rapkins RW, Marshall Graves JA (2005) Characterizing the chromosomes of the Australian model marsupial Macropus eugenii (tammar wallaby). Chromosome Res 13:627–636

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Angata T, Tabuchi Y, Nakamura K, Nakamura M (2007) Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 17:838–846

    Article  PubMed  CAS  Google Scholar 

  • Belov K, Deakin JE, Papenfuss AT, Baker ML, Melman SD, Siddle HV, Gouin N, Goode DL, Sargeant TJ, Robinson MD, Wakefield MJ, Mahony S, Cross JG, Benos PV, Samollow PB, Speed TP, Graves JA, Miller RD (2006) Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex. PLoS Biol 4:e46

    Article  PubMed  Google Scholar 

  • Belov K, Sanderson CE, Deakin JE, Wong ES, Assange D, McColl KA, Gout A, de Bono B, Barrow AD, Speed TP, Trowsdale J, Papenfuss AT (2007) Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Res 17:982

    Article  PubMed  CAS  Google Scholar 

  • Bernal A, Crammer K, Hatzigeorgiou A, Pereira F (2007) Global discriminative learning for higher-accuracy computational gene prediction. PLoS Comput Biol 3:e54

    Article  PubMed  Google Scholar 

  • Bina M, Crowely E (2001) Sequence patterns defining the 5' boundary of human genes. Biopolymers 59:347–355

    Article  PubMed  CAS  Google Scholar 

  • Blery M, Kubagawa H, Chen CC, Vely F, Cooper MD, Vivier E (1998) The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc Natl Acad Sci U S A 95:2446–2451

    Article  PubMed  CAS  Google Scholar 

  • Blery M, Olcese L, Vivier E (2000) Early signaling via inhibitory and activating NK receptors. Hum Immunol 61:51–64

    Article  PubMed  CAS  Google Scholar 

  • Butcher S, Arney KL, Cook GP (1998) MAFA-L, an ITIM-containing receptor encoded by the human NK cell gene complex and expressed by basophils and NK cells. Eur J Immunol 28:3755–3762

    Article  PubMed  CAS  Google Scholar 

  • Cambiaggi C, Scupoli MT, Cestari T, Gerosa F, Carra G, Tridente G, Accolla RS (1992) Constitutive expression of CD69 in interspecies T-cell hybrids and locus assignment to human chromosome 12. Immunogenetics 36:117–120

    Article  PubMed  CAS  Google Scholar 

  • Carrington M, Cullen M (2004) Justified chauvinism: advances in defining meiotic recombination through sperm typing. Trends Genet 20:196–205

    Article  PubMed  CAS  Google Scholar 

  • Chiang HI, Zhou H, Raudsepp T, Jesudhasan PR, Zhu JJ (2007) Chicken CD69 and CD94/NKG2-like genes in a chromosomal region syntenic to mammalian natural killer gene complex. Immunogenetics 59:603–611

    Article  PubMed  CAS  Google Scholar 

  • Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266

    Article  PubMed  CAS  Google Scholar 

  • Davis RS, Dennis G Jr, Odom MR, Gibson AW, Kimberly RP, Burrows PD, Cooper MD (2002) Fc receptor homologs: newest members of a remarkably diverse Fc receptor gene family. Immunol Rev 190:123–136

    Article  PubMed  CAS  Google Scholar 

  • DeFranco AL, Locksley RM, Robertson M (2007) Immunity: the immune response in infectious and inflammatory disease. New Science, U.S

    Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system

  • Dennis G Jr, Kubagawa H, Cooper MD (2000) Paired Ig-like receptor homologs in birds and mammals share a common ancestor with mammalian Fc receptors. Proc Natl Acad Sci U S A 97:13245–13250

    Article  PubMed  CAS  Google Scholar 

  • Dohm JC, Tsend-Ayush E, Reinhardt R, Grutzner F, Himmelbauer H (2007) Disruption and pseudoautosomal localization of the major histocompatibility complex in monotremes. Genome Biol 8:R175

    Article  PubMed  Google Scholar 

  • Eagle RA, Trowsdale J (2007) Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 7:737–744

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Hao L, Nei M (2005) Rapid expansion of killer cell immunoglobulin-like receptor genes in primates and their coevolution with MHC Class I genes. Gene 347:149–159

    Article  PubMed  CAS  Google Scholar 

  • Hao L, Klein J, Nei M (2006) Heterogeneous but conserved natural killer receptor gene complexes in four major orders of mammals. Proc Natl Acad Sci U S A 103:3192–3197

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann SC, Schellack C, Textor S, Konold S, Schmitz D, Cerwenka A, Pflanz S, Watzl C (2007) Identification of CLEC12B, an inhibitory receptor on myeloid cells. J Biol Chem 282:22370–22375

    Article  PubMed  CAS  Google Scholar 

  • Kelley J, Trowsdale J (2005) Features of MHC and NK gene clusters. Transpl Immunol 14:129–134

    Article  PubMed  CAS  Google Scholar 

  • Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet 1:129–139

    Article  PubMed  CAS  Google Scholar 

  • Kikuno R, Sato A, Mayer WE, Shintani S, Aoki T, Klein J (2004) Clustering of C-type lectin natural killer receptor-like loci in the bony fish Oreochromis niloticus. Scand J Immunol 59:133–142

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Laun K, Coggill P, Palmer S, Sims S, Ning Z, Ragoussis J, Volpi E, Wilson N, Beck S, Ziegler A, Volz A (2006) The leukocyte receptor complex in chicken is characterized by massive expansion and diversification of immunoglobulin-like Loci. PLoS Genet 2:e73

    Article  PubMed  Google Scholar 

  • Messer M, Weiss AS, Shaw DC, Westerman M (1998) Evolution of the monotremes: phylogenetic relationship to marsupials and eutherians, and estimation of divergence dates based on a-lactalbumin amino acid sequences. J Mamm Evol 5:95–105

    Article  Google Scholar 

  • Munday BL, Whittington RJ, Stewart NJ (1998) Disease conditions and subclinical infections of the platypus (Ornithorhynchus anatinus). Philos Trans R Soc Lond B Biol Sci 353:1093–1099

    Article  PubMed  CAS  Google Scholar 

  • Nikolaidis N, Klein J, Nei M (2005) Origin and evolution of the Ig-like domains present in mammalian leukocyte receptors: insights from chicken, frog, and fish homologues. Immunogenetics 57:151–157

    Article  PubMed  CAS  Google Scholar 

  • Panagos PG, Dobrinski KP, Chen X, Grant AW, Traver D, Djeu JY, Wei S, Yoder JA (2006) Immune-related, lectin-like receptors are differentially expressed in the myeloid and lymphoid lineages of zebrafish. Immunogenetics 58:31–40

    Article  PubMed  CAS  Google Scholar 

  • Pyz E, Marshall AS, Gordon S, Brown GD (2006) C-type lectin-like receptors on myeloid cells. Ann Med 38:242–251

    Article  PubMed  CAS  Google Scholar 

  • Reid DM, Montoya M, Taylor PR, Borrow P, Gordon S, Brown GD, Wong SY (2004) Expression of the beta-glucan receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J Leukoc Biol 76:86–94

    Article  PubMed  CAS  Google Scholar 

  • Rogers S, Shaw I, Ross N, Nair V, Rothwell L, Kaufman J, Kaiser P (2003) Analysis of part of the chicken Rfp-Y region reveals two novel lectin genes, the first complete genomic sequence of a class I alpha-chain gene, a truncated class II beta-chain gene, and a large CR1 repeat. Immunogenetics 55:100–108

    Google Scholar 

  • Rogers SL, Gobel TW, Viertlboeck BC, Milne S, Beck S, Kaufman J (2005) Characterization of the chicken C-type lectin-like receptors B-NK and B-lec suggests that the NK complex and the MHC share a common ancestral region. J Immunol 174:3475–3483

    PubMed  CAS  Google Scholar 

  • Saether PC, Westgaard IH, Hoelsbrekken SE, Benjamin J, Lanier LL, Fossum S, Dissen E (2008) KLRE/I1 and KLRE/I2: a novel pair of heterodimeric receptors that inversely regulate NK cell cytotoxicity. J Immunol 181:3177–3182

    PubMed  CAS  Google Scholar 

  • Sambrook JG, Beck S (2007) Evolutionary vignettes of natural killer cell receptors. Curr Opin Immunol 19:553–560

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Mayer WE, Overath P, Klein J (2003) Genes encoding putative natural killer cell C-type lectin receptors in teleostean fishes. Proc Natl Acad Sci U S A 100:7779–7784

    Article  PubMed  CAS  Google Scholar 

  • Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, Tanaka T, Miwa S, Katsura Y, Kita T, Masaki T (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386:73–77

    Article  PubMed  CAS  Google Scholar 

  • Stet RJ, Hermsen T, Westphal AH, Jukes J, Engelsma M, Lidy Verburg-van Kemenade BM, Dortmans J, Aveiro J, Savelkoul HF (2005) Novel immunoglobulin-like transcripts in teleost fish encode polymorphic receptors with cytoplasmic ITAM or ITIM and a new structural Ig domain similar to the natural cytotoxicity receptor NKp44. Immunogenetics 57:77–89

    Article  PubMed  CAS  Google Scholar 

  • Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, Wong SY (2002) The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169:3876–3882

    PubMed  CAS  Google Scholar 

  • Tormo J, Natarajan K, Margulies DH, Mariuzza RA (1999) Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402:623–631

    Article  PubMed  CAS  Google Scholar 

  • Viertlboeck BC, Habermann FA, Schmitt R, Groenen MA, Du Pasquier L, Gobel TW (2005) The chicken leukocyte receptor complex: a highly diverse multigene family encoding at least six structurally distinct receptor types. J Immunol 175:385–393

    PubMed  CAS  Google Scholar 

  • Warren WC, Hillier LW, Graves JAM, Birney E, Ponting CP, Grutzner F, Belov K, Miller W, Clarke L, Chinwalla AT et al (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175

    Article  PubMed  CAS  Google Scholar 

  • Wernersson R, Pedersen AG (2003) RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31:3537–3539

    Article  PubMed  CAS  Google Scholar 

  • Willment JA, Marshall AS, Reid DM, Williams DL, Wong SY, Gordon S, Brown GD (2005) The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol 35:1539–1547

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yoder JA, Mueller MG, Wei S, Corliss BC, Prather DM, Willis T, Litman RT, Djeu JY, Litman GW (2001) Immune-type receptor genes in zebrafish share genetic and functional properties with genes encoded by the mammalian leukocyte receptor cluster. Proc Natl Acad Sci U S A 98:6771–6776

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Litman RT, Mueller MG, Desai S, Dobrinski KP, Montgomery JS, Buzzeo MP, Ota T, Amemiya CT, Trede NS, Wei S, Djeu JY, Humphray S, Jekosch K, Hernandez Prada JA, Ostrov DA, Litman GW (2004) Resolution of the novel immune-type receptor gene cluster in zebrafish. Proc Natl Acad Sci U S A 101:15706–15711

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura C, Yamaguchi M, Iikura M, Izumi S, Kudo K, Nagase H, Ishii A, Walls AF, Ra C, Iwata T, Igarashi T, Yamamoto K, Hirai K (2002) Activation markers of human basophils: CD69 expression is strongly and preferentially induced by IL-3. J Allergy Clin Immunol 109:817–823

    Article  PubMed  CAS  Google Scholar 

  • Yusa S, Catina TL, Campbell KS (2002) SHP-1- and phosphotyrosine-independent inhibitory signaling by a killer cell Ig-like receptor cytoplasmic domain in human NK cells. J Immunol 168:5047–5057

    PubMed  CAS  Google Scholar 

  • Zelensky AN, Gready JE (2003) Comparative analysis of structural properties of the C-type-lectin-like domain (CTLD). Proteins 52:466–477

    Article  PubMed  CAS  Google Scholar 

  • Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. Febs J 272:6179–6217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out as part of the Platypus Genome Project. We thank Wes Warren and his team at Washington University, St. Louis, for giving us the opportunity to work on such an exciting project. We thank Kaighan McColl for bioinformatics support. E.W. and C.S. receive scholarships from the Jean Walker Trust and the ARC Center for Kangaroo Genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Belov.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

Includes detailed information on the identification of Ig domains, specifically pertaining to the identification of OSCAR, SIGLEC and Fc receptor genes, FISH data and accession numbers for all non-platypus sequences used in phylogenetic analyses (DOC 755 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, E.S.W., Sanderson, C.E., Deakin, J.E. et al. Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes. Immunogenetics 61, 565–579 (2009). https://doi.org/10.1007/s00251-009-0386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-009-0386-7

Keywords

Navigation