Skip to main content
Log in

Evidence of positive selection on the Atlantic salmon CD3γδ gene

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Atlantic salmon are typically anadromous, spending the majority of their lifetime in oceans and returning to fresh water to breed. This diversity of environments likely results in strong selective forces shaping their genome. In this paper, we present the first genomics approach to detect positive selection operating on the Salmo salar (salmon) lineage, an important aquaculture species. We identify a panel of candidate genes that may have been subject to adaptive evolution in this species. In particular, we identify a robust signature of positive selection operating on the salmon CD3γδ gene, which encodes one of the protein chains essential for formation of the T-cell receptor complex and for T-cell activation. Furthermore, we identified the particular codon sites that have been subject to positive selection in fish and highlight two sites flanking an important N-glycosylation site in this molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allendorf FW, Danzmann RG (1997) Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. Genetics 145:1083–1092

    PubMed  CAS  Google Scholar 

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum, New York, pp 1–53

    Google Scholar 

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592

    PubMed  CAS  Google Scholar 

  • Araki K, Suetake H, Kikuchi K, Suzuki Y (2005) Characterization and expression analysis of CD3e and CD3gd in fugu, Takifugu rubripes. Immunogenetics 57:158–163

    Article  PubMed  CAS  Google Scholar 

  • Bernot A, Auffray C (1991) Primary structure and ontogeny of an avian CD3 transcript. PNAS 88:2550–2554

    Article  PubMed  CAS  Google Scholar 

  • Chinabut S, Puttinaowarat S (2005) The choice of disease control strategies to secure international market access for aquaculture products. Dev Biol (Basel) 121:255–261

    CAS  Google Scholar 

  • Clevers H, Alarcon B, Wileman T, Terhorst C (1988) The T cell receptor/CD3 complex: a dynamic protein ensemble. Annu Rev Immunol 6:629–662

    Article  PubMed  CAS  Google Scholar 

  • Dann S, Ted Allison W, Levin D, Taylor J, Hawryshyn C (2004) Salmonid opsin sequences undergo positive selection and indicate an alternate evolutionary relationship in Oncorhynchus. J Mol Evol 58:400–412

    Article  PubMed  CAS  Google Scholar 

  • Demetriou M, Granovsky M, Quaggin S, Dennis JW (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5N-glycosylation. Nature 409:733–739

    Article  PubMed  CAS  Google Scholar 

  • Dietrich J, Neisig A, Hou X, Wegener A, Gajhede M, Geisler C (1996) Role of CD3 gamma in T cell receptor assembly. J Cell Biol 132:299–310

    Article  PubMed  CAS  Google Scholar 

  • Dzialo R, Cooper M (1997) An amphibian CD3 homologue of the mammalian CD3 g and d genes. Eur J Immunol 27:1640–1647

    PubMed  CAS  Google Scholar 

  • Ford MJ (2001) Molecular evolution of transferrin: evidence for positive selection in salmonids. Mol Biol Evol 18:639–647

    PubMed  CAS  Google Scholar 

  • Gobel TWF, Dangy J-P (2000) Evidence for a stepwise evolution of the CD3 family. J Immunol 164:879–883

    PubMed  CAS  Google Scholar 

  • Hayes SM, Laky K, El-Khoury D, Kappes DJ, Fowlkes BJ, Love PE (2002) Activation-induced modification in the CD3 complex of the gd T cell receptor. J Exp Med 196:1355–1361

    Article  PubMed  CAS  Google Scholar 

  • Hendry AP, Stearns SC (2004) Evolution illuminated: salmon and their relatives. Oxford University Press, Oxford, New York

    Google Scholar 

  • Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203

    Article  PubMed  CAS  Google Scholar 

  • Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol, Heidelberg, Germany, pp 138–148

  • Johnson KR, Wright JE Jr, May B (1987) Linkage relationships reflecting ancestral tetraploidy in salmonid fish. Genetics 116:579–591

    PubMed  CAS  Google Scholar 

  • Krissansen G, Owen M, Fink P, Crumpton M (1987) Molecular cloning of the cDNA encoding the T3 gamma subunit of the mouse T3/T cell antigen receptor complex. J Immunol 138:3513–3518

    PubMed  CAS  Google Scholar 

  • Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lee J-Y, Tada T, Hirono I, Aoki T (1998) Molecular cloning and evolution of transferrin cDNAs in salmonids. Mol Mar Biol Biotechnol 7:287–293

    PubMed  CAS  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  PubMed  CAS  Google Scholar 

  • Phillips R, Rab P (2001) Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev Camb Philos Soc (London) 76:1–25

    Article  CAS  Google Scholar 

  • Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan Y-L, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902

    Article  PubMed  CAS  Google Scholar 

  • Rise ML, von Schalburg KR, Brown GD, Mawer MA, Devlin RH, Kuipers N, Busby M, Beetz-Sargent M, Alberto R, Gibbs AR, Hunt P, Shukin R, Zeznik JA, Nelson C, Jones SRM, Smailus DE, Jones SJM, Schein JE, Marra MA, Butterfield YSN, Stott JM, Ng SHS, Davidson WS, Koop BF (2004) Development and application of a salmonid EST database and cDNA microarray: data mining and interspecific hybridization characteristics. Genome Res 14:478–490

    Article  PubMed  Google Scholar 

  • Rudd PM, Wormald MR, Stanfield RL, Huang M, Mattsson N, Speir JA, DiGennaro JA, Fetrow JS, Dwek RA, Wilson IA (1999) Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J Mol Biol 293:351–366

    Article  PubMed  CAS  Google Scholar 

  • Saitoh K, Hayashizaki K, Yokoyama Y, Asahida T, Toyohara H, Yamashita Y (2000) Complete nucleotide sequence of Japanese flounder (Paralichthys olivaceus) mitochondrial genome: structural properties and cue for resolving teleostean relationship. J Hered 91:271–278

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Danzmann RG, Gharbi K, Howard P, Ozaki A, Khoo SK, Woram RA, Okamoto N, Ferguson MM, Holm L-E, Guyomard R, Hoyheim B (2000) A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155:1331–1345

    PubMed  CAS  Google Scholar 

  • Steinke D, Salzburger W, Braasch I, Meyer A (2006) Many genes in fish have species-specific asymmetric rates of molecular evolution. BMC Genomics 7:20

    Article  PubMed  Google Scholar 

  • Suzumoto BK, Schreck CB, McIntyre JD (1977) Relative resistances of three transferrin genotypes of coho salmon (Oncorhynchus kisutch) and their hematological responses to bacterial kidney disease. J Fish Res Board Can 34:1–8

    CAS  Google Scholar 

  • Tunnacliffe A, Olsson C, Buluwela L, Rabbitts TH (1988) Organization of the human CD3 locus on chromosome 11. Eur J Immunol 18:1639–1642

    PubMed  CAS  Google Scholar 

  • Winter GW, Schreck CB, McIntyre JD (1980) Resistance of different stocks and transferrin genotypes of coho salmon, Oncorhynchus kisutch, and steelhead trout, Salmo gairdneri, to bacterial kidney disease and vibriosis. Fish Bull 77:795–802

    Google Scholar 

  • Wong WSW, Yang Z, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z (2002) Inference of selection from multiple species alignments. Curr Opin Genet Dev 12:688–694

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen A-MK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    PubMed  CAS  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by a postdoctoral fellowship of Xunta de Galicia PGIDIT 2005 to Fernando Cruz. David J. Lynn is supported in part by Science Foundation Ireland grant no. 02-IN.1-B256. Thanks go to Professor Ken Wolfe, Smurfit Institute of Genetics, Trinity College, Dublin, for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Lynn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(XLS 38.4 kb)

ESM2

(XLS 24.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, F., Bradley, D.G. & Lynn, D.J. Evidence of positive selection on the Atlantic salmon CD3γδ gene. Immunogenetics 59, 225–232 (2007). https://doi.org/10.1007/s00251-006-0188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0188-0

Keywords

Navigation