Skip to main content
Log in

Using modern approaches to sedimentation velocity to detect conformational changes in proteins

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

It has been known for decades that proteins undergo conformational changes in response to binding ligands. Such changes are usually accompanied by a loss of entropy by the protein, and thus conformational changes are integral to the thermodynamics of ligand association. Methods to detect these alterations are numerous; here, we focus on the sedimentation velocity (SV) mode of AUC, which has several advantages, including ease of use and rigorous data-selection criteria. In SV, it is assumed that conformational changes manifest primarily as differences in the sedimentation coefficient (the s-value). Two methods of determining s-value differences were assessed. The first method used the widely adopted c(s) distribution to gather statistics on the s-value differences to determine whether the observed changes were reliable. In the second method, a decades-old technique called “difference SV” was revived and updated to address its viability in this era of modern instrumentation. Both methods worked well to determine the extent of conformational changes to three model systems. Both simulations and experiments were used to explore the strengths and limitations of the methods. Finally, software incorporating these methodologies was produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Available upon request.

References

  • Bai X, Fernandez IS, Mcmullan G, Scheres SHW (2013) Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. Elife 2:e00461

    PubMed  PubMed Central  Google Scholar 

  • Behlke J, Ristau O (2002) A new approximate whole boundary solution of the Lamm differential equation for the analysis of sedimentation velocity experiments. Biophys Chem 95:59–68

    CAS  PubMed  Google Scholar 

  • Bennett WS, Steitz TA (1978) Glucose-induced conformational change in yeast hexokinase. Proc Natl Acad Sci USA 75:4848–4852

    CAS  PubMed  Google Scholar 

  • Borges JC, Pereira JH, Vasconcelos IB et al (2006) Phosphate closes the solution structure of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Mycobacterium tuberculosis. Arch Biochem Biophys 452:156–164

    CAS  PubMed  Google Scholar 

  • Borrok MJ, Kiessling LL, Forest KT (2007) Conformational changes of glucose/galactose-binding protein illuminated by open, unliganded, and ultra-high-resolution ligand-bound structures. Protein Sci 16:1032–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borrok MJ, Zhu Y, Forest KT, Kiessling LL (2009) Structure-based design of a periplasmic binding protein antagonist that prevents domain closure. ACS Chem Biol 4:447–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brautigam CA, Deka RK, Liu WZ, Norgard MV (2018) Crystal structures of MglB-2 (TP0684), a topologically variant d-glucose-binding protein from Treponema pallidum, reveal a ligand-induced conformational change. Protein Sci 27:880–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brautigam CA, Deka RK, Liu WZ, Norgard MV (2016) The Tp0684 (MglB-2) lipoprotein of Treponema pallidum: a glucose-binding protein with divergent topology. PLoS ONE 11:e0161022

    PubMed  PubMed Central  Google Scholar 

  • Brown PH, Balbo A, Schuck P (2007) Using prior knowledge in the determination of macromolecular size-distributions by analytical ultracentrifugation. Biomacromol 8:2011–2024

    CAS  Google Scholar 

  • Brown PH, Schuck P (2008) A new adaptive grid-size algorithm for the simulation of sedimentation velocity profiles in analytical ultracentrifugation. Comput Phys Commun 178:105–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catterall WA, Wisedchaisri G, Zheng N (2017) The chemical basis for electrical signaling. Nat Chem Biol 13:455–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson AL, Maloney PC (2007) ABC transporters: how small machines do a big job. Trends Microbiol 15:448–455

    CAS  PubMed  Google Scholar 

  • de la Torre JG, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structures. Biophys J 78:719–730

    Google Scholar 

  • Desai A, Krynitsky J, Pohida TJ et al (2016) 3-D printing for analytical ultracentrifugation. PLoS ONE 11:e0155201

    PubMed  PubMed Central  Google Scholar 

  • Deupi X, Standfuss J (2011) Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr Opin Struct Biol 21:541–551

    CAS  PubMed  Google Scholar 

  • Dwyer MA, Hellinga HW (2004) Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr Opin Struct Biol 14:495–504

    CAS  PubMed  Google Scholar 

  • Errington N, Rowe AJ (2003) Probing conformation and conformational change in proteins is optimally undertaken in relative mode. Eur Biophys J 32:511–517. https://doi.org/10.1007/s00249-003-0315-x

    Article  CAS  PubMed  Google Scholar 

  • Fawaz MV, Topper ME, Firestine SM (2011) The ATP-grasp enzymes. Bioorg Chem 39:185–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felder CB, Graul RC, Lee AY et al (1999) The venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS J 1:7–26

    Google Scholar 

  • Fleming PJ, Fleming KG (2018) HullRad: Fast calculations of folded and disordered protein and nucleic acid hydrodynamic properties. Biophys J 114:856–869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fresquet M, Jowitt TA, Ylöstalo J et al (2007) Structural and functional characterization of recombinant matrilin-3 A-domain and implications for human genetic bone diseases. J Biol Chem 282:34634–34643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Google Scholar 

  • Gerhart JC, Schachman HK (1968) Allosteric interactions in aspartate transcarbamylase. II. Evidence for different conformational states of the protein in the presence and absence of specific ligands. Biochemistry 7:538–552

    CAS  PubMed  Google Scholar 

  • Gutmann T, Kim KH, Grzybek M et al (2018) Visualization of ligand-induced transmembrane signaling in the full-length human insulin receptor. J Cell Biol 217:1643–1649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris SJ, Winzor DJ (1988) Thermodynamic nonideality as a probe of allosteric mechanisms: preexistence of the isomerization equilibrium for rabbit muscle pyruvate kinase. Arch Biochem Biophys 265:458–465

    CAS  PubMed  Google Scholar 

  • Jacobsen MP, Winzor DJ (1997) Studies of ligand-mediated conformational changes in enzymes by difference sedimentation velocity in the Optima XL-A ultracentrifuge. Prog Colloid Polym Sci 107:82–87

    CAS  Google Scholar 

  • Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419–446

    CAS  PubMed  Google Scholar 

  • Kamata K, Mitsuya M, Nishimura T et al (2004) Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure 12:429–438

    CAS  PubMed  Google Scholar 

  • Khan FI, Lan D, Durrani R et al (2017) The lid domain in lipases: structural and functional determinant of enzymatic properties. Front Bioeng Biotechnol 5:1–13

    Google Scholar 

  • Kirschner MW, Schachman HK (1971a) Conformational changes in proteins as measured by difference seimentation studies. II. Effect of stereospecific ligands on the catalytic subunit of aspartate transcarbamylase. Biochemistry 10:1919–1926

    CAS  PubMed  Google Scholar 

  • Kirschner MW, Schachman HK (1971b) Conformational changes in proteins as measured by difference sedimenation studies. I. A technique for measuring small changes in sedimenation coefficient. Biochemistry 10:1900–1919

    CAS  PubMed  Google Scholar 

  • Kornblatt JA, Schuck P (2005) Influence of temperature on the conformation of canine plasminogen: an analytical ultracentrifugation and dynamic light scattering study. Biochemistry 44:13122–13131. https://doi.org/10.1021/bi050895y

    Article  CAS  PubMed  Google Scholar 

  • Krishnan N, Koveal D, Miller DH et al (2014) Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat Chem Biol 10:558–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 392:1509–1519

    Google Scholar 

  • Laue TM, Shah BD, Ridgeway RM, Pelletier SL (1992) Computer-aided interpretation of analytical sedimentation data for proteins. In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. The Royal Society of Chemistry, Cambridge, pp 90–125

    Google Scholar 

  • Li X, Mooney P, Zheng S et al (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590. https://doi.org/10.1038/nmeth.2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao B, Pear MR, McCammon JA, Quiocho FA (1982) Hinge-bending in l-arabinose- binding protein: the “Venus-flytrap” model. J Biol Chem 257:1131–1133

    CAS  PubMed  Google Scholar 

  • Marquardt DW (1963) An algorithm for the least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Google Scholar 

  • Moree B, Connell K, Mortensen RB et al (2015) Protein conformational changes are detected and resolved site specifically by second-harmonic generation. Biophys J 109:806–815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelder J, Mead R (1964) A simplex method for function minimization. Comput J 7:308–313

    Google Scholar 

  • Newcomer ME, Lewis BA, Quiocho FA (1981) The radius of gyration of l-arabinose-binding protein decreases upon binding of ligand. J Biol Chem 256:13218–13222

    CAS  PubMed  Google Scholar 

  • Oberfelder RW, Consler TG, Lee JC (1985) Measurement of changes of hydrodynamic properties by sedimentation. Methods Enzymol 117:27–40

    CAS  PubMed  Google Scholar 

  • Oberfelder RW, Lee LL-Y, Lee JC (1984) Thermodynamic linkages in rabbit pyruvate kinase: kinetic, equilibrium, and structural studies. Biochemistry 23:3813–3821

    CAS  PubMed  Google Scholar 

  • Ortega A, Amorós D, García De La Torre J (2011) Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J 101:892–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Persons JD, Khan SN, Ishima R (2018) An NMR strategy to detect conformational differences in a protein complexed with highly analogous inhibitors in solution. Methods 148:9–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Philo JS (1997) An improved function for fitting sedimentation velocity data for low- molecular-weight solutes. Biophys J 72:435–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rees AW, DeBuysere MS, Lewis EA (1977) Difference sedimentation velocity adapted to low molecular weight proteins. Arch Biochem Biophys 182:478–487

    CAS  PubMed  Google Scholar 

  • Richards EG, Schachman HK (1959) Ultracentrifuge studies with Rayleigh interference optics. I. General applications. J Phys Chem 63:1578–1591

    Google Scholar 

  • Schuck P (2000) Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuck P (2016) Sedimentation velocity analytical ultracentrifugation: discrete species and size-distributions of macromolecules and particles. CRC Press, Boca Raton

    Google Scholar 

  • Schuck P (1998) Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys J 75:1503–1512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuck P, Demeler B (1999) Direct sedimentation analysis of interference optical data in analytical ultracentrifugation. Biophys J 76:2288–2296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang G, Zhang C, Chen ZJ et al (2019) Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature 567:389–393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Tamao Y, Blakley RL (1977) Regulation and cooperativity: the case of ribonucleotide reductase of Lactobacillus leischmanii. Adv Enzyme Regul 15:81–99

    CAS  Google Scholar 

  • Skerrett RJ (1975) The theory of the difference sedimentation method. Anal Biochem 66:1–11

    CAS  PubMed  Google Scholar 

  • To SC, Brautigam CA, Chaturvedi SK et al (2019) Enhanced sample handling for analytical ultracentrifugation with 3D-printed centerpieces. Anal Chem 91:5866–5873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uchikawa E, Choi E, Shang G et al (2019) Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor–ligand complex. Elife 8:e48630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yikilmaz E, Rouault TA, Schuck P (2005) Self-association and ligand induced conformational changes of iron regulatory proteins 1 and 2. Biochemistry 44:8470–8478

    CAS  PubMed  Google Scholar 

  • Zhao H, Ghirlando R, Piszczek G et al (2013) Recorded scan times can limit the accuracy of sedimentation coefficients in analytical ultracentrifugation. Anal Biochem 437:104–108

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Peter Schuck for helpful discussions and the use of one of the analytical ultracentrifuges in his lab to collect some of the data presented herein. Parts of this research were supported by a Grant (AI056305) to M.V.N. from the National Institutes of Health.

Funding

NIH Grant No. AI056305 to M.V.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Brautigam.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Code availability

Compiled software freely available. Custom Python script available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: Analytical Ultracentrifugation 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brautigam, C.A., Tso, SC., Deka, R.K. et al. Using modern approaches to sedimentation velocity to detect conformational changes in proteins. Eur Biophys J 49, 729–743 (2020). https://doi.org/10.1007/s00249-020-01453-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-020-01453-w

Keywords

Navigation