Skip to main content
Log in

Understanding the interactions of human follicle stimulating hormone with single-walled carbon nanotubes by molecular dynamics simulation and free energy analysis

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Interactions of carbon nanotubes (CNTs) and blood proteins are of interest for nanotoxicology and nanomedicine. It is believed that the interactions of blood proteins and glycoproteins with CNTs may have important biological effects. In spite of many experimental studies of single-walled carbon nanotubes (SWCNT) and glycoproteins with different methods, little is known about the atomistic details of their association process or of structural alterations occurring in adsorbed glycoproteins. In this study, we have applied molecular dynamics simulation to investigate the interaction of follicle stimulating hormone (hFSH) with SWCNT. The aim of this work is to investigate possible mechanisms of nanotoxicity at a molecular level. We present details of the molecular dynamics, structure, and free energy of binding of hFSH on the surface of SWCNT. We find that hFSH in aqueous solution strongly adsorbs onto SWCNT via their concave surface as evidenced by high binding free energies for residues in both protein subunits. It was found that hydrophobic, π–cation, and π–π stacking interactions are the main driving forces for the adsorption of the protein at the nanotube surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Az’hari S, Ghayeb Y (2014) Effect of chirality, length and diameter of carbon nanotubes on the adsorption of 20 amino acids: a molecular dynamics simulation study. Mol Simul 40:392–398

    Article  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci 98:10037–10041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen H, Grigera J, Straatsma T (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  • Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  • Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778–16785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N· log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061

    Article  PubMed  Google Scholar 

  • De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  PubMed  Google Scholar 

  • Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6:39–44

    Article  CAS  PubMed  Google Scholar 

  • Di Crescenzo A, Ettorre V, Fontana A (2014) Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J Nanotechnol 5:1675–1690

    Article  PubMed  PubMed Central  Google Scholar 

  • Dingreville R, Karnesky RA, Puel G, Schmitt J-H (2016) Review of the synergies between computational modeling and experimental characterization of materials across length scales. J Mater Sci 51:1178–1203

    Article  CAS  Google Scholar 

  • Fadel TR, Li N, Shah S, Look M, Pfefferle LD, Haller GL, Justesen S, Wilson CJ, Fahmy TM (2013) Adsorption of multimeric T cell antigens on carbon nanotubes: effect on protein structure and antigen-specific T cell stimulation. Small 9:666–672

    Article  CAS  PubMed  Google Scholar 

  • Fan QR, Hendrickson WA (2005) Structure of human follicle-stimulating hormone in complex with its receptor. Nature 433:269–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox KM, Dias JA, Van Roey P (2001) Three-dimensional structure of human follicle-stimulating hormone. Mol Endocrinol 15:378–389

    Article  CAS  PubMed  Google Scholar 

  • Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci 108:16968–16973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Yang Z, Wang L, Zhou H, Jimenez-Cruz CA, Zhou R (2014) The role of basic residues in the adsorption of blood proteins onto the graphene surface. Sci Rep 5:10873

    Article  Google Scholar 

  • He Z, Zhou J (2014) Probing carbon nanotube–amino acid interactions in aqueous solution with molecular dynamics simulations. Carbon 78:500–509

    Article  CAS  Google Scholar 

  • He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. BioMed Res Int 2013:1–12. doi:10.1155/2013/578290

    Google Scholar 

  • Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  PubMed  Google Scholar 

  • Huang C-W, Mohamed MG, Zhu C-Y, Kuo S-W (2016) Functional supramolecular polypeptides involving π–π stacking and strong hydrogen-bonding interactions: a conformation study toward carbon nanotubes (CNTs) dispersion. Macromolecules 49:5374–5385

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Gr 14:33–38

    Article  CAS  Google Scholar 

  • Ji S-R, Liu C, Zhang B, Yang F, Xu J, Long J, Jin C, Fu D-L, Ni Q-X, Yu X-J (2010) Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta (BBA)-Rev Cancer 1806:29–35

    Article  CAS  Google Scholar 

  • Jiang X, Liu H, Chen X, Chen P-H, Fischer D, Sriraman V, Henry NY, Arkinstall S, He X (2012) Structure of follicle-stimulating hormone in complex with the entire ectodomain of its receptor. Proc Natl Acad Sci 109:12491–12496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  • Kumari R, Kumar R, Lynn A (2014) g_mmpbsa: a GROMACS tool for high-throughput MM–PBSA calculations. J Chem Inf Model 54:1951–1962

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lin R, He H, Jiang L, Gao M (2013) Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin. Spectrochim Acta Part A Mol Biomol Spectrosc 105:45–51

    Article  CAS  Google Scholar 

  • Liang L, Chen E-Y, Shen J-W, Wang Q (2016) Molecular modelling of translocation of biomolecules in carbon nanotubes: method, mechanism and application. Mol Simul 42:827–835

    Article  CAS  Google Scholar 

  • Lijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 364:737

    Article  Google Scholar 

  • Marchesan S, Prato M (2015) Under the lens: carbon nanotube and protein interaction at the nanoscale. Chem Commun 51:4347–4359

    Article  CAS  Google Scholar 

  • Marchesan S, Melchionna M, Prato M (2014) Carbon nanostructures for nanomedicine: opportunities and challenges. Fullerenes Nanotubes Carbon Nanostruct 22:190–195

    Article  CAS  Google Scholar 

  • Marchesan S, Melchionna M, Prato M (2015) Wire up on carbon nanostructures! How to play a winning game. ACS Nano 9:9441–9450

    Article  CAS  PubMed  Google Scholar 

  • Masotti A, Caporali A (2013) Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications. Int J Mol Sci 14:24619–24642

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullen MP, Cooke DJ, Crow MA (2013) Structural and functional roles of FSH and LH as glycoproteins regulating reproduction in mammalian species. InTechOpen, Rijeka, Croatia

    Google Scholar 

  • Oliveira SF, Bisker G, Bakh NA, Gibbs SL, Landry MP, Strano MS (2015) Protein functionalized carbon nanomaterials for biomedical applications. Carbon 95:767–779

    Article  CAS  Google Scholar 

  • Rajesh C, Majumder C, Mizuseki H, Kawazoe Y (2009) A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. J Chem Phys 130:124911

    Article  PubMed  Google Scholar 

  • Safari J, Zarnegar Z (2014) Advanced drug delivery systems: nanotechnology of health design A review. J Saudi Chem Soc 18:85–99

    Article  CAS  Google Scholar 

  • Sanz V, Coley HM, Silva SRP, McFadden J (2012) Modeling the binding of peptides on carbon nanotubes and their use as protein and DNA carriers. J Nanopart Res 14:1–13

    Google Scholar 

  • Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856

    Article  CAS  PubMed  Google Scholar 

  • Shen J-W, Wu T, Wang Q, Kang Y (2008) Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces. Biomaterials 29:3847–3855

    Article  CAS  PubMed  Google Scholar 

  • Shen JW, Wu T, Wang Q, Kang Y, Chen X (2009) Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules. ChemPhysChem 10:1260–1269

    Article  CAS  PubMed  Google Scholar 

  • Tonelli FM, Goulart VA, Gomes KN, Ladeira MS, Santos AK, Lorençon E, Ladeira LO, Resende RR (2015) Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine 10:2423–2450

    Article  CAS  PubMed  Google Scholar 

  • Ulloa-Aguirre A, Timossi C (1998) Structure–function relationship of follicle-stimulating hormone and its receptor. Hum Reprod Update 4:260–283

    Article  CAS  PubMed  Google Scholar 

  • Ulloa-Aguirre A, Timossi C, Damián-Matsumura P, Dias JA (1999) Role of glycosylation in function of follicle-stimulating hormone. Endocrine 11:205–215

    Article  CAS  PubMed  Google Scholar 

  • Valle RP, Wu T, Zuo YY (2015) Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant. ACS Nano 9:5413–5421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Wang C, Takei K, Takahashi T, Javey A (2013) Carbon nanotube electronics—moving forward. Chem Soc Rev 42:2592–2609

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Sun W, Dai H, Zhang Y, Qin X, Li L, Wei Z, Chen X (2014) Influence of charge states on the π–π interactions of aromatic side chains with surface of graphene sheet and single-walled carbon nanotubes in bioelectrodes. J Phys Chem C 118:20694–20701

    Article  CAS  Google Scholar 

  • Xie H, Becraft EJ, Baughman RH, Dalton AB, Dieckmann GR (2008) Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides. J Pept Sci 14:139–151

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zhang S, Weber JK, Luan B, Zhou R, Li J (2016) Sequential protein unfolding through a carbon nanotube pore. Nanoscale 8(24):12143–12151. doi:10.1039/c6nr00410e

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wang Z, Tian X, Xiu P, Zhou R (2012) Amino acid analogues bind to carbon nanotube via π–π interactions: comparison of molecular mechanical and quantum mechanical calculations. J Chem Phys 136:025103

    Article  PubMed  Google Scholar 

  • Zhang L, Xiao X, Yuan Y, Guo Y, Li M, Pu X (2015) Probing immobilization mechanism of alpha-chymotrypsin onto carbon nanotube in organic media by molecular dynamics simulation. Sci Rep 5:1–11

    Google Scholar 

  • Zhao X, Lu D, Hao F, Liu R (2015) Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity. J Hazard Mater 292:98–107

    Article  CAS  PubMed  Google Scholar 

  • Zorbas V, Smith AL, Xie H, Ortiz-Acevedo A, Dalton AB, Dieckmann GR, Draper RK, Baughman RH, Musselman IH (2005) Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J Am Chem Soc 127:12323–12328

    Article  CAS  PubMed  Google Scholar 

  • Zuo G, Xiu P, Zhou X, Zhou R, Fang H (2012) Conformational changes of the protein domains upon binding with carbon nanotubes studied by molecular dynamics simulations. Curr Phys Chem 2:12–22

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Majid Jafari for the valuable help in MD issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Mehrnejad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2066 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, Y., Mehrnejad, F. & Khalifeh, K. Understanding the interactions of human follicle stimulating hormone with single-walled carbon nanotubes by molecular dynamics simulation and free energy analysis. Eur Biophys J 47, 49–57 (2018). https://doi.org/10.1007/s00249-017-1228-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-017-1228-4

Keywords

Navigation