Skip to main content
Log in

Angiotensin II induces the aggregation of native and oxidized low-density lipoprotein

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Modifications of low-density lipoprotein (LDL), such as oxidation and aggregation, and angiotensin (Ang) peptides are involved in the pathogenesis of atherosclerosis. Here, we investigated the relationship between one of the Ang peptides, AngII, and two LDL modifications, oxidation and aggregation. Using polyacrylamide gel electrophoresis and aggregation assays, we noted that AngII markedly induced the aggregation of LDL and oxidized LDL (Ox-LDL), and bound to both the aggregated and non-aggregated forms. In contrast, a peptide (AngIII) formed by deletion of N-terminal Asp of AngII induced the aggregation of Ox-LDL but not LDL. From tyrosine fluorescence measurements, we noted that AngII interacted with two major lipid components in LDL and Ox-LDL, phosphatidylcholine (PC) and oxidized PC, while AngIII interacted with oxidized PC, but not with PC and lysophosphatidylcholine. Moreover, results from thiobarbituric acid-reactive substances assay proved that AngII did not induce oxidation of LDL. These results suggest that AngII can be involved in the pathogenesis of atherosclerosis by binding to LDL and Ox-LDL—especially to the major lipid components, PC and oxidized PC—followed by inducing the aggregation of LDL and Ox-LDL and that the N-terminal Asp of AngII is important for the binding and aggregation specificity of LDL and Ox-LDL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aikawa M, Sugiyama S, Hill C, Voglic S, Rabkin E, Fukumoto Y, Schoen F, Witztum J, Libby P (2002) Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation 160:1390–1396

    Article  Google Scholar 

  • Arakawa K, Urata H (2000) Hypothesis regarding the pathophysiological role of alternative pathways of angiotensin II formation in atherosclerosis. Hypertension 36:638–641

    Article  CAS  PubMed  Google Scholar 

  • Aviram M (1993) Modified forms of low density lipoprotein and atherosclerosis. Atherosclerosis 98:1–9

    Article  CAS  PubMed  Google Scholar 

  • Aviram M (1996) Oxidized low density lipoprotein (Ox-LDL) interaction with macrophages in atherosclerosis and the antiatherogenicity of antioxidants. Eur J Clin Chem Clin Biochem 34:599–608

    CAS  PubMed  Google Scholar 

  • Caplan BA, Schwartz CJ (1973) Increased endothelial cell turnover in areas of in vivo Evans blue uptake in the pig aorta. Atherosclerosis 17:60–73

    Article  Google Scholar 

  • Crisby M, Kallin B, Thyberg J, Zhivotovsky B, Orrenius S, Kostulas V, Nilsson J (1997) Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis 130:17–27

    Article  CAS  PubMed  Google Scholar 

  • Dobrian A, Mora R, Simionescu M, Simionescu N (1993) In vitro formation of oxidatively-modified and reassembled human low-density lipoproteins: antioxidant effect of albumin. Biochim Biophys Acta 1169:12–24

    Article  CAS  PubMed  Google Scholar 

  • Guimond MO, Gallo-Payet N (2012) The angiotensin II type 2 receptor in brain functions: an update. Int J Hypertens. doi:10.1155/2012/351758

    PubMed  PubMed Central  Google Scholar 

  • Haberland ME, Reynolds JA (1975) Interaction of l-α-palmitoyl lysophosphatidylcholine with the AI polypeptide of high density lipoprotein. J Biol Chem 250:6636–6639

    CAS  PubMed  Google Scholar 

  • Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34:1345–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoff HF, Whitaker TE, O’Neil J (1992) Oxidation of low density lipoprotein leads to particle aggregation and altered macrophage recognition. J Biol Chem 267:602–609

    CAS  PubMed  Google Scholar 

  • Ishii I, Fukushima N, Ye X, Chun J (2004) Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 73:321–354

    Article  CAS  PubMed  Google Scholar 

  • Itabe H (1998) Oxidized phospholipids as a new landmark in atherosclerosis. Prog Lipid Res 37:181–207

    Article  CAS  PubMed  Google Scholar 

  • Itabe H, Mori M, Fujimoto Y, Higashi Y, Takano T (2003) Minimally modified LDL is an oxidized LDL enriched with oxidized phosphatidylcholines. J Biochem 134:459–465

    Article  CAS  PubMed  Google Scholar 

  • Itabe H, Obama T, Kato R (2011) The dynamics of oxidized LDL during atherogenesis. J Lipids 2011:418313

    Article  PubMed  PubMed Central  Google Scholar 

  • John S, Delles C, Klingbeil AU, Jacobi J, Schlaich MP, Schmieder RE (1999) Low-density lipoprotein-cholesterol determines vascular responsiveness to angiotensin II in normocholesterolaemic humans. J Hypertens 17:1933–1939

    Article  CAS  PubMed  Google Scholar 

  • Kumagai T, Ogawa N, Tsutsumi H, Ebina K, Yokota K (2005) A synthetic peptide (P-21) derived from Asp-hemolysin inhibits the induction of macrophage proliferation by oxidized low-density lipoprotein. Biol Pharm Bull 28:1381–1384

    Article  CAS  PubMed  Google Scholar 

  • Lodewijk JW, Voors AA, Buikema H, van Gilst WH (2002) Angiotensin receptors in the cardiovascular system. Can J Cardiol 18:1331–1339

    Google Scholar 

  • Long H, Wang L, Su H, Xu J, Li J, Peng Q, Dong Y, Cheng X (2015) Increased circulatory RAS activity can be inhibited by statins in patients with hypercholesterolemia. J Renin-Angiotensin-Aldosterone Syst 16:126–130

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mahmoudabady M, Kazemi N, Niazmand S, Rezaee SA, Soukhtanloo M, Hosseini M (2015) The effect of angiotensin-converting enzyme inhibition on inflammatory and angiogenic factors in hypercholesterolemia. Pharmacol Rep 67:837–841

    Article  CAS  PubMed  Google Scholar 

  • Maor I, Hayek T, Coleman R, Aviram M (1997) Plasma LDL oxidation leads to its aggregation in the atherosclerotic apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 17:2995–3005

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A, Naito M, Itakura H, Ikemoto S, Asaoka H, Hayakawa I, Kanamori H, Aburatani H, Takaku F, Suzuki H, Kobari Y, Miyai T, Takahashi K, Cohenii EH, Wydroii R, Housman DE, Kodama T (1990) Human macrophage scavenger receptors: primary structure, expression, and localization in atherosclerotic lesions. Proc Natl Acad Sci USA 87:9133–9137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzolai L, Pedrazzini T, Nicoud F, Gabbiani G, Brunner HR, Nussberger J (2000) Increased cardiac angiotensin II levels induce right and left ventricular hypertrophy in normotensive mice. Hypertension 35:985–991

    Article  CAS  PubMed  Google Scholar 

  • Meyer DF, Mayans MO, Groot PH, Suckling KE, Bruckdorfer KR, Perkins SJ (1995) Time-course studies by neutron solution scattering and biochemical assays of the aggregation of human low-density lipoprotein during Cu2+-induced oxidation. Biochem J 310:417–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki M, Sakonjo H, Takai S (1999) Anti-atherosclerotic effects of an angiotensin converting enzyme inhibitor and an angiotensin II antagonist in Cynomolgus monkeys fed a high-cholesterol diet. Br J Pharmacol 128:523–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore KJ, Sheddy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navar LG, Mitchell KD, Harrison-Bernard LM, Kobori H, Nishiyama A (2001) Intrarenal angiotensin II levels in normal and hypertensive states. J Renin Angiotensin Aldosterone Syst 2:S176–S184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickenig G, Jung O, Strehlow K, Zolk O, Linz W, Schölkens BA, Böhm M (1997) Hypercholesterolemia is associated with enhanced angiotensin AT1 receptor expression. Am J Physiol 41:H2701–H2707

    Google Scholar 

  • Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, Nagahiro S (2002) Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22:1649–1654

    Article  CAS  PubMed  Google Scholar 

  • Ojala PJ, Hirvonen TE, Hermansson M, Somerharju P, Parkkinen J (2007) Acyl chain-dependent effect of lysophosphatidylcholine on human neutrophils. J Leukoc Biol 82:1501–1509

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld ME (1991) Oxidized LDL affects multiple atherogenic cellular responses. Circulation 83:2137–2140

    Article  CAS  PubMed  Google Scholar 

  • Ross R (1999) Mechanism of disease: atherosclerosis—an inflammatory disease. N Engl Med 340:115–126

    Article  CAS  Google Scholar 

  • Sato A, Ebina K (2013) Endothelins specifically recognize lysophosphatidylcholine micelles. J Pept Sci 19:355–361

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Yamanaka H, Oe K, Yamazaki Y, Ebina K (2014) Novel fluorescently labeled peptide compounds for detection of oxidized low-density lipoprotein at high specificity. Chem Biol Drug Des 84:443–449

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Yamanaka H, Oe K, Yokoyama I, Yamazaki Y, Ebina K (2015a) Highly stable, fluorescence-labeled heptapeptides substituted with a D-amino acid for the specific detection of oxidized low-density lipoprotein in plasma. Chem Biol Drug Des 85:348–355

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Yokoyama I, Ebina K (2015b) Angiotensin peptides attenuate platelet-activating factor-induced inflammatory activity in rats. Peptides 73:60–66

    Article  PubMed  Google Scholar 

  • Sato A, Ueda C, Kimura R, Kobayashi C, Yamazaki Y, Ebina K (2016) A fluorescence-labeled heptapeptide, (FITC)KP6, as an efficient probe for the specific detection of oxidized and minimally modified low-density lipoprotein. J Fluoresc 26:1141–1150

    Article  CAS  PubMed  Google Scholar 

  • Sigala F, Kotsinas A, Savari P, Filis K, Markantonis S, Iliodromitis EK, Gorgoulis VG, Andreadou I (2010) Oxidized LDL in human carotid plaques is related to symptomatic carotid disease and lesion instability. J Vasc Surg 52:704–713

    Article  PubMed  Google Scholar 

  • Steenbergen C, Jennings RB (1984) Relationship between lysophospholipid accumulation and plasma membrane injury during total in vitro ischemia in dog heart. J Mol Cell Cardiol 16:605–621

    Article  CAS  PubMed  Google Scholar 

  • Sternberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol: modification of low-density lipoprotein that increases its atherogenicity. N Engl J Med 320:915–924

    Article  Google Scholar 

  • Tertov VV, Sobenin IA, Gabbasov ZA, Popov EG, Orekhov AN (1989) Lipoprotein aggregation as an essential condition of intracellular lipid accumulation caused by modified low density lipoproteins. Biochem Biophys Res Commun 163:489–494

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM, Berry C (2002) Recent advances in angiotensin II signaling. Braz J Med Biol Res 35:1001–1015

    Article  CAS  PubMed  Google Scholar 

  • Weiss D, Kools JJ, Taylor WR (2001) Angiotensin II-induced hypertension accelerates the development of atherosclerosis in ApoE-deficient mice. Circulation 103:448–454

    Article  CAS  PubMed  Google Scholar 

  • Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15:551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witztum JL (1993) Role of oxidized low-density lipoprotein in atherogenesis. Br Heart J 69:12–18

    Article  Google Scholar 

  • Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Kakino A, Takeshita H, Hayashi N, Li L, Nakano A, Hanasaki-Yamamoto H, Fujita Y, Imaizumi Y, Toyama-Yokoyama S, Nakama C, Kawai T, Takeda M, Hongyo K, Oguro R, Maekawa Y, Itoh N, Takami Y, Onishi M, Takeya Y, Sugimoto K, Kamide K, Nakagami H, Ohishi M, Kurtz TW, Sawamura T, Rakugi H (2015) Oxidized LDL (oxLDL) activates the angiotensin II type 1 receptor by binding to the lectin-like oxLDL receptor. FASEB J 29:3342–3356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Editage by Cactus Communications Inc. (Tokyo, Japan) for providing assistance with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Sato.

Ethics declarations

Conflict of interest

The authors declare that there exist no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, A., Ueda, C., Kimura, R. et al. Angiotensin II induces the aggregation of native and oxidized low-density lipoprotein. Eur Biophys J 47, 1–9 (2018). https://doi.org/10.1007/s00249-017-1208-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-017-1208-8

Keywords

Navigation