Skip to main content
Log in

Probing the wild-type HRas activation mechanism using steered molecular dynamics, understanding the energy barrier and role of water in the activation

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Ras is one of the most common oncogenes in human cancers. It belongs to a family of GTPases that functions as binary conformational switches by timely switching of their conformations from GDP to GTP and vice versa. It attains the final active state structure via an intermediate GTP-bound state. The transition between these states is a millisecond-time-scale event. This makes studying this mechanism beyond the scope of classical molecular dynamics. In the present study, we describe the activation pathway of the HRas protein complex along the distance-based reaction coordinate using steered molecular dynamics. Approximately ~720 ns of MD simulations using CMD and SMD was performed. We demonstrated the change in orientation and arrangement of the two switch regions and the role of various hydrogen bonds during the activation process. The weighted histogram analysis method was also performed, and the potential of mean force was calculated between the inactive and active via the intermediate state (state 1) of HRas. The study indicates that water seems to play a crucial role in the activation process and to transfer the HRas protein from its intermediate state to the fully active state. The implications of our study hereby suggest that the HRas activation mechanism is a multistep process. It starts from the inactive state to an intermediate state 1 followed by trapping of water molecules and flipping of the Thr35 residue to form a fully active state (state 2). This state 2 also comprises Gly60, Thr35, GTP, Mg2+ and water-forming stable interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

RAS:

RAt Sarcoma

HRas:

Harvey Rat sarcoma

MD:

Molecular Dynamics

CMD:

Classical Molecular Dynamics

SMD:

Steered Molecular Dynamics

GTP:

Guanosine tri-Phosphate

GDP:

Guanosine di-Phosphate

PMF:

Potential of Mean Force

Sw I:

Switch-1

Sw II:

Switch-2

P-loop:

Phosphate-binding loop

References

  • Adjei AA (2001) Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 93:1062–1074

    Article  CAS  PubMed  Google Scholar 

  • Barbacid M (1987) Ras genes. Annu Rev Biochem 56:779–827

    Article  CAS  Google Scholar 

  • Bartels C, Karplus M (1997) Multidimensional adaptive umbrella sampling: applications to main chain and side chain peptide conformations. J Comput Chem 18:1450–1462

    Article  CAS  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJ, Meyer EE Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535

    Article  CAS  PubMed  Google Scholar 

  • Boguski MS, McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366:643–654

    Article  CAS  PubMed  Google Scholar 

  • Bokoch GM, Der CJ (1993) Emerging concepts in the Ras superfamily of GTP-binding proteins. FASEB J 7(9):751–759

    Google Scholar 

  • Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180:1961–1972

    Article  CAS  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877

    Article  CAS  PubMed  Google Scholar 

  • Brunger AT, Milburn MV, Tong L, Devos AM, Jancarik J, Yamaizumi Z, Nishimura S, Ohtsuka E, Kim SH (1990) Crystal structure of an active form of RAS protein, a complex of a GTP analog and the HRas p21 catalytic domain. Proc Natl Acad Sci USA 87:4849–4853

    Article  CAS  PubMed  Google Scholar 

  • Cherfils J, Chardin P (1999) Structural basis for their activation of small GTP-binding proteins. Trends Biochem Sci 24:306–311

    Article  CAS  PubMed  Google Scholar 

  • Diaz JF, Wroblowski B, Engelborghs Y (1995) Molecular dynamics simulation of the solution structures of Ha-ras-p21 GDP and GTP complexes: flexibility, possible hinges, and levers of the conformational transition. Biochemistry 34:12038–12047

    Article  CAS  PubMed  Google Scholar 

  • Diaz JF, Wroblowski B, Schlitter J, Engelborghs Y (1997) Calculation of pathways for the conformational transition between the GTP- and GDP-bound states of the Ha-ras-p21 protein: calculations with explicit solvent simulations and comparison with calculations in vacuum. Proteins: Struct Funct Bioinform 28:434–451

    Article  CAS  Google Scholar 

  • Diaz JF, Escalona MM, Kuppens S, Engelborghs Y (2000) Role pf the switch II region I the conformational transition of activation of Ha-ras-p21. Protein Sci 9(2):361–368

    Article  CAS  PubMed  Google Scholar 

  • Downward J (2003) Targeting Ras siganlling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  CAS  PubMed  Google Scholar 

  • Foley CK, Pedersen LG, Charifson PS, Darden TA, Wittinghofer A, Pai EF, Anderson MW (1992) Simulation of the solution structure of the H-ras p21–GTP complex. Biochemistry 31:4951–4959

    Article  CAS  PubMed  Google Scholar 

  • Ford B, Hornak V, Kleinman H, Nassa N (2006a) Structure of a transient intermediate for GTP hydrolysis by Ras. Structure 14:427–436

    Article  CAS  PubMed  Google Scholar 

  • Futatsugi N, Tsuda M (2001) Molecular dynamics simulations of Gly-12 → Val mutant of p21(ras): dynamic inhibition mechanism. Biophys J 81:3483–3488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao C, Eriksson LA (2013) Impact of mutations on K-Ras-p120GAP interaction. Comput Molecular Bioscience 3(2):9–17

    Google Scholar 

  • Goodsell DS (1999) The molecular perspective: the Ras oncogene. Oncologist 4:263–264

    CAS  PubMed  Google Scholar 

  • Gorfe AA, Grant BJ, McCammon JA (2008) Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins. Structure 16:885–896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grant BJ, Lukman S, Hocker HJ, Sayyah J, Brown JH, MCCammon JA, Gorfe AA (2011) Novel allosteric sites on Ras for lead generation. PLoS One 6(10):e25711

    Google Scholar 

  • Grigorenko BL, Nemukhin AV, Shadrina MS, Topol IA, Burt SA (2007) Mechanisms of guanosine triphosphate hydrolysis by Ras and Ras-GAP proteins as rationalized by Ab initio QM/MM simulations. Proteins 66:456–466

    Article  CAS  PubMed  Google Scholar 

  • Heesen HT, Gerwert K, Schlitter J (2007) Role of the arginine finger in RasÆRasGAP revealed by QM/MM calculations. FEBS Lett 581:5677–5684

    Article  Google Scholar 

  • Hess B, Kutzner C, Spoel Dvd, Lindahl E (2008) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

  • Hocker HJ, Cho KJ, Chen CY, Rambahal N, Sagineedu SR, Shaari K, Stanslas J, Hancock JF, Gorfe AA (2013) Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Proc Natl Acad Sci USA 110(25):10201–10206. doi:10.1073/pnas.1300016110

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Molec Graphics 14:33–38

    Article  CAS  Google Scholar 

  • Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi C, Saito S (2010) Relation between the conformational heterogeneity and reaction cycle of Ras: molecular simulation of Ras. Biophys J 99:3726–3734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kosztin I, Bruinsma R, O’Lague P, Schulten K (2002) Mechanical force generation by G proteins. Proc Natl Acad Sci USA 99:3575–3580

    Article  CAS  PubMed  Google Scholar 

  • Kuppens S, Hellings M, Jordens J, Verheyden S, Engelborghs Y (2003) Conformational states of the switch I region of Ha-ras-p21 in hinge residue mutants studied by fluorescence lifetime and fluorescence anisotropy measurements. Protein Sci 12(5):930–938

    Article  CAS  PubMed  Google Scholar 

  • Lukman S, Grant BJ, Gorfe AA, Grant GH, McCammon JA (2010) The distinct conformational dynamics of K-Ras and H-Ras A59G. PLoS Comput Biol 6:e1000922

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma J, Karplus M (1997) Molecular switch in signal transduction: reaction paths of the conformational changes in ras p21. Proc Natl Acad Sci USA 94:11905–11910

    Article  CAS  PubMed  Google Scholar 

  • Martin-Garcia F, Mendieta-Moreno JI, Lopez-Vinas E, Gomez-Puertas P, Mendieta J (2012) The role of Gln61 in HRas GTP hydrolysis: a quantum mechanics/molecular mechanics study. Biophys J 102:152–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milburn MV, Tong L, deVos AM, Brunger A, Yamaizumi Z, Nishimura S, Kim SH (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247:939–945

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Hata M, Neya S, Hoshino T (2002) A study on the role of Mg2+ in a Ras protein by MD simulation. Chem-Bio Informatics J 2:147–155

    Article  Google Scholar 

  • Muraoka S, Shima F, Araki M, Inonue T, Yoshimoto A, Ijiri Y, Seki N, Tamura A, Kumasaka T, Kataoka T (2012) Crystal structures of the state 1 conformations of the GTP-bound H-Ras protein and its oncogenic G12 V and Q61L mutants. FEBS Lett 586:1715–1718

    Article  CAS  PubMed  Google Scholar 

  • Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A (1990) Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J 9:2351–2359

    CAS  PubMed  Google Scholar 

  • Prakash P, Gorfe AA (2013) Lessons from computer simulations of Ras proteins in solution and in membrane. Biochim Biophys Acta 1830:5211–5218

    Article  CAS  PubMed  Google Scholar 

  • Prakash P, Ahmad AS, Gorfe AA (2012) The role of conserved waters in conformational transitions of Q61H K-ras. PLoS Comput Biol 8:e1002394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raimondi F, Portella G, Orozco M, Fanelli F (2011) Nucleotide binding switches the information flow in Ras GTPases. PLoS Comput Biol 7:e1001098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudack T, Xia F, Schlitter J, Kotting C, Gerwert K (2012) The role of magnesium for geometry and charge in GTP hydrolysis, revealed by quantum mechanics/molecular mechanics simulations. Biophys J 103:293–302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sack S, Kull FJ, Mandelkow E (1999) Motor proteins of the kinesin family structures, variations, and nucleotide binding sites. Eur J Biochem 262:1–11

    Article  CAS  PubMed  Google Scholar 

  • Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, Wittinghofer A (1997) The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277:333–339

    Article  CAS  PubMed  Google Scholar 

  • Scheidig A, Burmester C, Goody RS (1999) The pre-hydrolysis state of p21ras in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins. Structure 7:1311–1324

    Article  CAS  PubMed  Google Scholar 

  • Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7:295–308

    Article  CAS  PubMed  Google Scholar 

  • Schuttelkopf AW, Aalten DMFv (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr Sect D: Biol Crystallogr 60:1355–1363

    Google Scholar 

  • Shima F, Ijiri Y, Muraoka S, Liao J, Ye M, Araki M, Matsumoto K, Yamamoto N, Sugimoto T, Yoshikawa Y, Kumasaka T, Yamamoto M, Tamura A, Kataoka T (2010) Structural basis for conformational dynamics of GTP-bound Ras protein. J Biol Chem 285:22696–22705

    Article  CAS  PubMed  Google Scholar 

  • Souaille M, Roux B (2000) Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput Phys Commun 135:40–57

    Article  Google Scholar 

  • Spoerner M, Hozsa C, Poetzl JA, Reiss K, Ganser P, Geyer M, Kalbitzer HR (2010) Conformational states of human rat sarcoma (Ras) protein complexed with its natural ligand GTP and their role for effector interaction and GTP hydrolysis. J Biol Chem 285:39768–39778

    Article  CAS  PubMed  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    CAS  PubMed  Google Scholar 

  • Virnau P, Muller M (2004) Calculation of free energy through successive umbrella sampling. J Chem Phys 120:10925–10930

    Article  CAS  PubMed  Google Scholar 

  • White MA, Nicolette C, Minden A, Polverino A, Aelst LV, Karin M, Wigler MH (1995) Multiple Ras functions can contribute to mammalian cell transformation. Cell 80:533–541

    Article  CAS  PubMed  Google Scholar 

  • Xia F, Rudack T, Kotting C, Schlitter J, Gerwert K (2011) The specific vibrational modes of GTP in solution and bound to Ras: a detailed theoretical analysis by QM/MM simulations. Phys Chem Chem Phys 13:21451–21460

    Article  CAS  PubMed  Google Scholar 

  • http://plasma-gate.weizmann.ac.il/Grace/, Version: Grace-5.1.22

Download references

Acknowledgments

The authors gratefully acknowledge the Department of Electronics and Information Technology (DeitY), Government of India, New Delhi, for providing financial support. This work was performed using the “Bioinformatics Resources and Applications Facility (BRAF)” and “National PARAM Supercomputing Facility (NPSF)” at C-DAC, Pune.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Uddhavesh Sonavane or Rajendra Joshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1924 kb)

Supplementary material 2 (MPG 51787 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, N., Sonavane, U. & Joshi, R. Probing the wild-type HRas activation mechanism using steered molecular dynamics, understanding the energy barrier and role of water in the activation. Eur Biophys J 43, 81–95 (2014). https://doi.org/10.1007/s00249-014-0942-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0942-4

Keywords

Navigation