Skip to main content
Log in

Low-temperature molecular dynamics simulations of horse heart cytochrome c and comparison with inelastic neutron scattering data

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulation combined with inelastic neutron scattering can provide information about the thermal dynamics of proteins, especially the low-frequency vibrational modes responsible for large movement of some parts of protein molecules. We performed several 30-ns MD simulations of cytochrome c (Cyt c) in a water box for temperatures ranging from 110 to 300 K and compared the results with those from experimental inelastic neutron scattering. The low-frequency vibrational modes were obtained via dynamic structure factors, S(Q, ω), obtained both from inelastic neutron scattering experiments and calculated from MD simulations for Cyt c in the same range of temperatures. The well known thermal transition in structural movements of Cyt c is clearly seen in MD simulations; it is, however, confined to unstructured fragments of loops Ω1 and Ω2; movement of structured loop Ω3 and both helical ends of the protein is resistant to thermal disturbance. Calculated and experimental S(Qω) plots are in qualitative agreement for low temperatures whereas above 200 K a boson peak vanishes from the calculated plots. This may be a result of loss of crystal structure by the protein–water system compared with the protein crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel S, Waks M, Marchi M (2010) Molecular dynamics simulations of cytochrome c unfolding in AOT reverse micelles: the first steps. Eur Phys E Soft Matter 32:399–409

    Article  CAS  Google Scholar 

  • Autenrieth F, Tajkhorshid E, Baudry J, Luthey-Schulten Z (2004) Classical force field parameters for the heme prosthetic group of cytochrome c. J Comput Chem 25:1613–1622

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Gori-Savellini G, Turano P (1997) A molecular dynamics study in explicit water of the reduced and oxidized forms of yeast iso-1-cytochrome c. Eur J Biochem 249:716–723

    Article  PubMed  CAS  Google Scholar 

  • Battistuzzi G, Borsari M, Sola M (2001) Redox properties of cytochrome c. Antioxid. Redox Signal 3:279–291

    Article  CAS  Google Scholar 

  • Beissenhirtz MK, Scheller FW, Lisdat F (2004) A superoxide sensor based on a multilayer cytochrome c electrode. Anal Chem 76:4665–4671

    Article  PubMed  CAS  Google Scholar 

  • Bellissent-Funel MC (2004) Internal motions in proteins: a combined neutron scattering and molecular modelling approach. Pramana 63:91–97

    Article  CAS  Google Scholar 

  • Bertini I, Rosato A, Turano P (2004) Cytochrome c folding/unfolding: a unifying picture. J Porphyrins Phthalocyanines 8:238–245

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Brown KG, Erfurth SC, Small EW, Peticolas WL (1972) Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. Proc Natl Acad Sci USA 69:1467–1469

    Article  PubMed  CAS  Google Scholar 

  • Bu L, Straub JE (2003a) Vibrational frequency shifts and relaxation rates for a selected vibrational mode in cytochrome c. Biophys J 85:1429–1439

    Article  PubMed  CAS  Google Scholar 

  • Bu L, Straub JE (2003b) Simulating vibrational energy flow in proteins: relaxation rate and mechanism for heme cooling in cytochrome c. J Phys Chem B 107:12339–12345

    Article  CAS  Google Scholar 

  • Bushnell GW, Louie GV, Brayer GD (1990) High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol 214:585–595

    Article  PubMed  CAS  Google Scholar 

  • Connatser RW Jr, Belch H, Jirik L, Leach DJ, Trouw FR, Zanotti JM, Ren Y, Crawford RK, Carpenter JM, Price DL, Loong CK, Hodges JP, Herwig KW (2003) The QuasiElastic Neutron Spectrometer (QENS): recent upgrade and performance. In: Mank G, Conrad H (eds) Proceedings of the 16th meeting of the international collaboration on advanced neutron sources, Forschungszentrum Julich GmbH: Julich, pp 279–288

  • Cukier RI (2004) Quantum molecular dynamics simulation of proton transfer in cytochrome c oxidase. Biochim Biophys Acta 1656:189–202

    Article  PubMed  CAS  Google Scholar 

  • Cukier RI (2005) A molecular dynamics study of water chain formation in the proton-conducting K channel of cytochrome c oxidase. Biochim Biophys Acta 1706:134–146

    Article  PubMed  CAS  Google Scholar 

  • Cusack S, Smith J, Finney J, Karplus M, Trewhella J (1986) Low frequency dynamics of proteins studied by neutron time-of-flight spectroscopy. Physica B+C 136:256–259

    CAS  Google Scholar 

  • Cusack S, Smith J, Finney J, Tidor B, Karplus M (1988) Inelastic neutron scattering analysis of picosecond internal protein dynamics: comparison of harmonic theory with experiment. J Mol Biol 202:903–908

    Article  PubMed  CAS  Google Scholar 

  • Daidone I, Amadei A, Roccatano D, No AD (2003) Molecular dynamics simulation of protein folding by essential dynamics sampling: folding landscape of horse heart cytochrome c. Biophys J 85:2865–2871

    Article  PubMed  CAS  Google Scholar 

  • de Biase PM, Paggi DA, Doctorovich F, Hildebrandt P, Estrin DA, Murgida DH, Marti MA (2009) Molecular basis for the electric field modulation of cytochrome c structure and function. J Am Chem Soc 131:16248–16256

    Article  PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Gabel F, Bicout D, Lehnert U, Tehei M, Weik M, Zaccai G (2002) Protein dynamics studied by neutron scattering. Q Rev Biophys 35:327–367

    Article  PubMed  CAS  Google Scholar 

  • Garcia AE, Hummer G (1999) Conformational dynamics of cytochrome c: correlation to hydrogen exchange. Proteins Struct Funct Genet 36:175–191

    Article  PubMed  CAS  Google Scholar 

  • Genzel L, Keilmann F, Martin TP, Winterling G, Yacoby Y, Frohlich H, Makinen MW (1976) Low frequency Raman spectra of lysozyme. Biopolymers 15:219–225

    Article  PubMed  CAS  Google Scholar 

  • Goupil-Lamy AV, Smith JC, Yunoki J, Parker SF, Kataoka M (1997) High-resolution vibrational inelastic neutron scattering: a new spectroscopic tool for globular proteins. J Am Chem Soc 119:9268–9273

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein MLJ (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Joti Y, Kitao A, Go N (2004) Molecular simulation study to examine the possibility of detecting collective motion in protein by inelastic neutron scattering. Phys B 350:e627–e630

    Article  CAS  Google Scholar 

  • Karino K, Matubayasi N (2011) Communication: free-energy analysis of hydration effect on protein with explicit solvent: equilibrium fluctuation of cytochrome c. J Chem Phys 134:041105

    Article  PubMed  Google Scholar 

  • Karplus M, Gao YQ, Ma JP, van der Vaart A, Yang W (2005) Protein structural transitions and their functional role. Philos Trans R Soc Lond Ser A 363:331–355

    Article  CAS  Google Scholar 

  • Kataoka M, Kamikubo H, Nakagawa H, Parker SF, Smith J (2003) Neutron inelastic scattering as a high-resolution vibrational spectroscopy: new tool for the study of protein dynamics. Spectroscopy 17:529–535

    Article  CAS  Google Scholar 

  • Kiel JL (1995) Type-b cytochromes: sensors and switches. CRC Press, Boca Raton

    Google Scholar 

  • Kumar A, Mishra PC, Verma CS, Renugopalakrishnan V (2005) Density functional study of the heme moiety of cytochrome c. Int J Quantum Chem 102:1002–1009

    Article  CAS  Google Scholar 

  • Loong CK, Ikeda S, Carpenter J (1987) The resolution function of a pulsed-source neutron chopper spectrometer. Nucl Instrum Methods Phys Res Sect A 260:381–402

    Article  Google Scholar 

  • MacKerell AD Jr, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265

    Article  PubMed  CAS  Google Scholar 

  • Mao Y, Ratner MA, Jarrold MF (2001) Molecular dynamics simulations of the rehydration of folded and unfolded cytochrome C ions in the vapor phase. J Am Chem Soc 123:6503–6507

    Article  PubMed  CAS  Google Scholar 

  • McCammon JA, Gelin BR, Karplus M, Wolynes PG (1976) The hinge-bending mode in lysozyme. Nature 262:325–326

    Article  PubMed  CAS  Google Scholar 

  • McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  • Norberg J, Nilsson L (2003) Advances in biomolecular simulations: methodology and recent applications. Q Rev Biophys 36:257–306

    Article  PubMed  CAS  Google Scholar 

  • Nordgren CE, Tobias DJ, Klein ML, Blasie JK (2002) Molecular dynamics simulations of a hydrated protein vectorially oriented on polar and nonpolar soft surfaces. Biophys J 83:2906–2917

    Article  PubMed  CAS  Google Scholar 

  • Olkhova E, Hutter MC, Lill MA, Helms V, Michel H (2004) Dynamic water networks in cytochrome c oxidase from Paracoccus denitrificans investigated by molecular dynamics simulations. Biophys J 86:1873–1889

    Article  PubMed  CAS  Google Scholar 

  • Parrish JC, Guillemette JG, Wallace CJ (2001) A tale of two charges: distinct roles for an acidic and a basic amino acid in the structure and function of cytochrome c. Biochem Cell Biol 79:83–91

    PubMed  CAS  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed  CAS  Google Scholar 

  • Prabhakaran M, Gursahani SH, Verma CS, Garduno-Juarez R, Renugopalakrishnan V (2004) Cytochrome c: the effect of temperature and pressure from molecular dynamics simulations. J Phys Chem Solids 65:1615–1622

    Article  CAS  Google Scholar 

  • Price DL, Sköld K (1986) Introduction to neutron scattering. In: Celotta R, Levine J (eds) Methods of experimental physics. Academic Press, London, pp 1–98

    Google Scholar 

  • Renugopalakrishnan V, Bhatnagar RS (1984) Fourier transform infrared photoacoustic spectroscopy: a novel conformational probe. Demonstration of α-helical conformation of poly (γ-benzyl glutamate). J Am Chem Soc 106:2217–2219

    Article  CAS  Google Scholar 

  • Renugopalakrishnan V, Collette TW, Carreira LA, Bhatnagar RS (1985) Low-frequency Raman spectra as a conformational probe for polypeptides and proteins. Macromolecules 18:1786–1788

    Article  CAS  Google Scholar 

  • Renugopalakrishnan V, Ortiz-Lombardia M, Verma CJ (2005) Electrostatics of cytochrome-c assemblies. J Mol Model 11:265–270

    Article  PubMed  CAS  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Simonson T (2002) Gaussian fluctuations and linear response in an electron transfer protein. Proc Natl Acad Sci USA 99:6544–6549

    Article  PubMed  CAS  Google Scholar 

  • Singh SR, Prakash S, Vasu V, Karunakaran C (2009) Conformational flexibility decreased due to Y67F and F82H mutations in cytochrome c: molecular dynamics simulation studies. J Mol Graphics Model 28:270–277

    Article  CAS  Google Scholar 

  • Smith JC (2000) Inelastic and quasielastic neutron scattering: complementarity with biomolecular simulation. In: Fanchon E (ed) Structure and dynamics of biomolecules. Oxford University Press, Oxford, pp 161–180

    Google Scholar 

  • Tarek M, Tobias DJ (2000) The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments. Biophys J 79:3244–3257

    Article  PubMed  CAS  Google Scholar 

  • Tarek M, Tobias DJ (2001) Effects of solvent damping on side chain and backbone contributions to the protein boson peak. J Chem Phys 115:1607–1612

    Article  CAS  Google Scholar 

  • Tarek M, Tobias DJ (2002) Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 88:138101

    Article  PubMed  CAS  Google Scholar 

  • van Gunsteren WF, Berendsen HJC (1988) A leap-frog algorithm for stochastic dynamics. Mol Simul 1:173–185

    Article  Google Scholar 

  • Verma CS, Renugopalakrishnan V (2004) Computer experiments in the design of bionanodevices, modeling and simulating materials nanoworld. In: Vincenzini P, Zerbetto F (eds) Advances in science and technology. Techna Group Srl., Faenza, pp 321–328

    Google Scholar 

  • Zaccai G (2004) The effect of water on protein dynamics. Philos Trans R Soc London A 359:1269–1275

    Article  CAS  Google Scholar 

Download references

Acknowledgments

V.R. and S.V. acknowledge the Rothschild Foundation, NIH, NSF, USAFOSR, and the Wallace H. Coulter Foundation for support. The authors also wish to acknowledge Pittsburgh Supercomputing Center for generous allocation of Supercomputer time on TeraGrid through Project Serial Number: TG-CH090102. V.R. acknowledges neutron beam time at Argonne National Laboratory, Argonne, IL, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesan Renugopalakrishnan.

Additional information

Venkatesan Renugopalakrishnan: Dedicated to my father, Varun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulawski, W., Filipek, S., Zwolinska, A. et al. Low-temperature molecular dynamics simulations of horse heart cytochrome c and comparison with inelastic neutron scattering data. Eur Biophys J 42, 291–300 (2013). https://doi.org/10.1007/s00249-012-0874-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0874-9

Keywords

Navigation