Skip to main content
Log in

Confined detection volume of fluorescence correlation spectroscopy by bare fiber probes

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A fiber-tip-based near-field fluorescence correlation spectroscopy (FCS) has been developed for confining the detection volume to sub-diffraction-limited dimensions. This near-field FCS is based on near-field illumination by coupling a scanning near-field optical microscope (SNOM) to a conventional confocal FCS. Single-molecule FCS analysis at 100 nM Rhodamine 6G has been achieved by using bare chemically etched, tapered fiber tips. The detection volume under control of the SNOM system has been reduced over one order of magnitude compared to that of the conventional confocal FCS. Related factors influencing the near-field FCS performance are investigated and discussed in detail. In this proof-of-principle study, the preliminary experimental results suggest that the fiber-tip-based near-field FCS might be a good alternative to realize localized analysis at the single-molecule level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Berland KM, So PTC, Gratton E (1995) Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J 68:694

    Article  CAS  PubMed  Google Scholar 

  • Foquet M, Korlach J, Zipfel WR, Webb WW, Craighead HG (2004) Focal volume confinement by submicrometer size fluidic channels. Anal Chem 76:1618

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Parajo M, Tate T, Chen Y (1995) Gold coated parabolic tapers for scanning near-field optical microscopy: fabrication and optimization. Ultramicroscopy 61:155

    Article  CAS  Google Scholar 

  • Kastrup L, Blom H, Eggeling C, Hell SW (2005) Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94:178104

    Article  PubMed  Google Scholar 

  • Lei FH, Huang H, Piot O, Trussardi A, Manfait M, Shang G, Troyon M (2006) Active bimorph-based tapping-mode distance for scanning near-field optical microscopy of biological samples in liquid. J Appl Phys 100:84317

    Article  Google Scholar 

  • Leutenegger M, Gosch M, Perentes A, Hoffmann P, Martin OJF, Lasser T (2006) Confining the sampling volume for fluorescence correlation spectroscopy using a sub-wavelength sized aperture. Opt Express 14:956

    Article  CAS  PubMed  Google Scholar 

  • Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682

    Article  CAS  PubMed  Google Scholar 

  • Lewis A, Kuttner YY, Dekhter R, Polhan M (2007) Fluorescence correlation spectroscopy at 100 nM concentrations using near-field scanning optical microscopic geometries and highly diffracting force sensing fiber probes. Isr J Chem 47:171

    Article  CAS  Google Scholar 

  • Lu GW, Lei FH, Angiboust JF, Roche Y, Huang LY, Manfait M (2008) Near-field fluorescence correlation spectroscopy by using a tapered optical fiber tip as excitation source. In: Bubendorff JL, Lei FH (eds) Advanced technologies and applications on scanning probe microscopy. Research Signpost, Trivandrum, India, pp 89–100

  • Marcuse D (1978) Gaussian approximation of the fundamental modes of graded index fibers. J Opt Soc Am 68:103

    Article  Google Scholar 

  • Rigler R, Mets U, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background—analysis of translational diffusion. Eur Biophys J 22:169

    Article  CAS  Google Scholar 

  • Rigneault H, Capoulade J, Dintinger J, Wenger J, Bonod N, Popov E, Ebbesen TW, Lenne P-F (2005) Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys Rev Lett 95:117401

    Article  PubMed  Google Scholar 

  • Ruckstuhl T, Seeger S (2004) Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy. Opt Lett 29:569

    Article  PubMed  Google Scholar 

  • Samiee KT, Moran-Mirabal JM, Cheung YK, Graighead HG (2006) Zero mode waveguides for single molecule spectroscopy on lipid membranes. Biophys J 90:3288

    Article  CAS  PubMed  Google Scholar 

  • Stockle R, Fokas C, Deckert V, Zenobi R, Sick B, Hecht B, Wild UP (1999) High quality near field optical probes by tube etching. Appl Phys Lett 75:160

    Article  CAS  Google Scholar 

  • Vobornik D, Banks DS, Lu Z, Fradin C, Taylor R, Johnston LJ (2008) Fluorescence correlation spectroscopy with subdiffraction-limited resolution using near-field optical probes. Appl Phys Lett 93:163904

    Article  Google Scholar 

  • Wenger J, Lenne P-F, Popov E, Rigneault H, Dintinger J, Ebbesen TW (2005) Single molecule fluorescence in rectangular nano-apertures. Opt Express 13:7035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Conseil Régional Champagne-Ardenne (Convention: 7P06 and 7P07), France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 621 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, G., Lei, F.H., Angiboust, JF. et al. Confined detection volume of fluorescence correlation spectroscopy by bare fiber probes. Eur Biophys J 39, 855–860 (2010). https://doi.org/10.1007/s00249-009-0508-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0508-z

Keywords

Navigation