Skip to main content
Log in

Amphiphile-induced tubular budding of the bilayer membrane

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Amphiphile-induced tubular budding of the erythrocyte membrane was studied using transmission electron microscopy. No chiral patterns of the intramembraneous particles were found, either on the cylindrical buds, or on the tubular nanoexovesicles. In agreement with these observations, the tubular budding may be explained by in-plane ordering of anisotropic membrane inclusions in the buds where the difference between the principal membrane curvatures is very large. In contrast to previously reported theories, no direct external mechanical force is needed to explain tubular budding of the bilayer membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Corbeil D, Röper K, Fargeas CA, Joester A, Huttner WB (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91

    Article  CAS  PubMed  Google Scholar 

  • Derényi I, Jülicher F, Prost J (2002) Formation and interaction of membrane tubes. Phys Rev Lett 88:238101/1–4

    Article  PubMed  Google Scholar 

  • Evans E (1974) Bending resistance and chemically induced moments in membrane bilayers. Biophys J 14:923–931

    CAS  PubMed  Google Scholar 

  • Evans EA, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC Press, Boca Raton

    Google Scholar 

  • Fournier JB (1996) Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys Rev Lett 76:4436–4439

    Article  CAS  PubMed  Google Scholar 

  • Hägerstrand H, Kralj-Iglič V, Bobrowska-Hägerstrand M, Iglič A (1999) Membrane skeleton detachment in spherical and cylindrical microexovesicles. Bull Math Biol 61:1019–1030

    Article  Google Scholar 

  • Helfrich W (1974) Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles. Z Naturforsch 29c:510–515

    CAS  Google Scholar 

  • Hwang WC, Waugh RE (1997) Energy of dissociation of lipid bilayer from the membrane skeleton of red cells. Biophys J 72:2669–2678

    CAS  PubMed  Google Scholar 

  • Iglič A, Kralj-Iglič V, Majhenc J (1999) Cylindrical shapes of closed lipid bilayer structures correspond to an extreme area difference between the two monolayers of the bilayer. J Biomech 32:1343–1347

    Article  PubMed  Google Scholar 

  • Iglič A, Hägerstrand H, Bobrowska-Hägerstrand M, Arrigler V, Kralj-Iglič V (2003) Possible role of phospholipid nanotubes in directed transport of membrane vesicles. Phys Lett A 310:493–497

    Article  Google Scholar 

  • Iglič A, Fošnarič M, Hägerstrand H, Kralj-Iglič V (2004) Coupling between vesicle shape and the non-homogeneous lateral distribution of membrane constituents in Golgi bodies. FEBS Lett 574(1–3):9–12

    Article  PubMed  Google Scholar 

  • Kralj-Iglič V, Svetina S, Žekš B (1996) Shapes of bilayer vesicles with membrane embedded molecules. Eur Biophys J 24:311–321

    PubMed  Google Scholar 

  • Kralj-Iglič V, Heinrich V, Svetina S, Žekš B (1999) Free energy of closed membrane with anisotropic inclusions. Eur Phys J B 10:5–8

    Google Scholar 

  • Kralj-Iglič V, Iglič A, Hägerstrand H, Peterlin P (2000) Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles. Phys Rev E 61:4230–4234

    Article  Google Scholar 

  • Lutz HU, Lomant AJ, McMillan P, Wehrli E (1977) Rearrangements of integral membrane components during in vitro aging of sheep erythrocyte membranes. J Cell Biol 74:389–398

    Article  CAS  PubMed  Google Scholar 

  • Miao L, Fourcade B, Rao M, Wortis M, Zia RKP (1991) Equilibrium budding and vesiculation in the curvature model of fluid lipid vesicles. Phys Rev E 43:6843–6856

    CAS  Google Scholar 

  • Miao L, Seifert U, Wortis M, Döbereiner HG (1994) Budding transitions of fluid-bilayer vesicles: effect of area difference elasticity. Phys Rev E 49:5389–5407

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Lim G, Wortis M (2002) Echinocyte shapes: bending, stretching and shear determine spicule shape and spacing. Biophys J 82:1756–1772

    CAS  PubMed  Google Scholar 

  • Rustom A, Saffrich R, Markovič I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Seifert U, Lipowsky R (1995) Morphology of vesicles. In: Lipowsky R, Sackmann E (eds) Structure and dynamics of membranes. From cells to vesicles. Elsevier, Amsterdam, pp 403–463

    Google Scholar 

  • Selinger JV, MacKintosh FC, Schnur JM (1996) Theory of cylindrical tubules and helical ribbons of chiral lipid membranes. Phys Rev E 53:3804–3818

    Article  CAS  Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 71:4457–4461

    CAS  PubMed  Google Scholar 

  • Stokke BT, Mikkelsen A, Elgsaeter A (1986) The human erythrocyte membrane skeleton may be an ionic gel. Eur Biophys J 13:203–218

    CAS  PubMed  Google Scholar 

  • Tsafrir I, Caspi Y, Guedeau MA, Arzi T, Stavans J (2003) Budding and tubulation of highly oblate vesicles by anchored amphiphilic molecules. Phys Rev Lett 91:138102/1–4

    Article  PubMed  Google Scholar 

  • Yamashita Y, Masum SM, Tanaka T, Tamba Y, Yamazaki M (2002) Shape changes of giant unilamellar vesicles of phosphatidiylcholine induced by a de novo designed peptide interacting with their membrane interface. Langmuir 18:9638–9641

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Stimulating discussions with Hans U. Lutz and Sylvio May are gratefully acknowledged. The Åbo Akademy University supported the stay of A.I. at Åbo Akademy University in Åbo/Turku.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Iglič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kralj-Iglič, V., Hägerstrand, H., Veranič, P. et al. Amphiphile-induced tubular budding of the bilayer membrane. Eur Biophys J 34, 1066–1070 (2005). https://doi.org/10.1007/s00249-005-0481-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-005-0481-0

Keywords

Navigation