Skip to main content
Log in

Test of molecular dynamics force fields in gramicidin A

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The force fields commonly used in molecular dynamics simulations of proteins are optimized under bulk conditions. Whether the same force fields can be used in simulations of membrane proteins is not well established, although they are increasingly being used for such purposes. Here we consider ion permeation in the gramicidin A channel as a test of the AMBER force field in a membrane environment. The potentials of mean force for potassium ions are calculated along the channel axis and compared with the one deduced from the experimental conductance data. The calculated result indicates a rather large central barrier similar to those obtained from other force fields, which are incompatible with the conductance data. We suggest that lack of polarizability is the most likely cause of this problem, and, therefore, urge development of polarizable force fields for simulations of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen TW, Bastug T, Kuyucak S, Chung SH (2003a) Gramicidin A channel as a test ground for molecular dynamics force fields. Biophys J 84:2159–2168

    CAS  PubMed  Google Scholar 

  • Allen TW, Andersen OS, Roux B (2003b) Structure of gramicidin A in a lipid bilayer environment determined using molecular dynamics simulations and solid-state NMR data. J Am Chem Soc 125:9868–9877

    Article  CAS  PubMed  Google Scholar 

  • Allen TW, Andersen OS, Roux B (2004) Energetics of ion conduction through the gramicidin channel. Proc Natl Acad Sci USA 101:117–122

    Google Scholar 

  • Andersen OS, Koeppe RE (1992) Molecular determinants of channel function. Physiol Rev 72:89–158

    Google Scholar 

  • Arseniev AS, Lomize AL, Barsukov IL, Bystrov VF (1986) Gramicidin A transmembrane ion channel. Three-dimensional structure reconstruction based on NMR spectroscopy and energy refinement. Biol Membr 3:1077–1104

    Google Scholar 

  • Ash WL, Zlomislic MR, Oloo EO, Tieleman DP (2004) Computer simulation of membrane proteins. Biochim Biophys Acta 1666:158–189

    Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4:187–217

    CAS  Google Scholar 

  • Busath DD (1993) The use of physical methods in determining gramicidin structure and function. Ann Rev Physiol 55:473–501

    Google Scholar 

  • Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282:2220–2226

    CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  • Duca KA, Jordan PC (1998) Comparison of selectively polarizable force fields for ion–water-peptide interactions: Ion translocation in a gramicidin-like channel. J Phys Chem 102:9127–9138

    Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415:287–294

    Article  CAS  PubMed  Google Scholar 

  • Edwards S, Corry B, Kuyucak S, Chung SH (2002) Continuum electrostatics fails to describe ion permeation in the gramicidin channel. Biophys J 83:1348–1360

    CAS  PubMed  Google Scholar 

  • Hermans J, Berendsen HJC, van Gunsteren WF, Postma JPM (1984) A consistent empirical potential for water-protein interactions. Biopolymers 23:1513–1518

    Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Google Scholar 

  • Jordan PC (1990) Ion-water and ion-polypeptide correlations in a gramicidin-like channel. Biophys J 58:1133–1156

    CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulation of liquid water J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Google Scholar 

  • Ketchem RR, Hu W, Cross TA (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460

    CAS  PubMed  Google Scholar 

  • Ketchem RR, Roux B, Cross TA (1997) High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure 5:1655–1669

    Article  CAS  PubMed  Google Scholar 

  • Koeppe RE, Killian EJA, Greathouse DV (1994) Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J 66:14–24

    CAS  PubMed  Google Scholar 

  • Kumar S, Bouzida D, Swensen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comp Chem 13:1011–1021

    Google Scholar 

  • Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe DL, Zimmer J, Cuthberson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926

    Article  CAS  PubMed  Google Scholar 

  • Kuyucak S, Andersen OS, Chung SH (2001) Models of permeation in ion channels. Rep Prog Phys 64:1427–1472

    Article  CAS  Google Scholar 

  • Lee WK, Jordan PC (1984) Molecular dynamics simulation of cation motion in water filled gramicidin like pores. Biophys J 46:805–819

    Google Scholar 

  • Rick SW, Stuart SJ (2002) Potentials and algorithms for incorporating polarizability in computer simulations. Rev Comp Chem 18:89–146

    Google Scholar 

  • Roux B, Karplus M (1994) Molecular dynamics simulations of the gramicidin channel. Annu Rev Biophys Biomol Struct 23:731–761

    Google Scholar 

  • Roux B, Allen A, Berneche S, Im W (2004) Theoretical and computational models of biological ion channels. Q Rev Biophys 37:15–103

    Google Scholar 

  • Silvestrelli PL, Parrinello M (1999) Structural, electronic, and bonding properties of liquid water from first principles. J Chem Phys 111:3572–3580

    Google Scholar 

  • Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Google Scholar 

  • Tian F, Cross TF (1999) Cation transport: An example of structural based selectivity. J Mol Biol 285:1993–2003

    Article  CAS  PubMed  Google Scholar 

  • Tieleman DP, Biggin PC, Smith GR, Sansom MSP (2001) Simulation approaches to ion channel structure-function relationships. Q Rev Biophys 34:473–561

    Google Scholar 

  • Urry DW (1971) The gramicidin A transmembrane channel: a proposed πLD helix. Proc Natl Acad Sci USA 68:672–676

    Google Scholar 

  • Wallqvist A, Mountain RD (1999) Molecular models of water: derivation and description. Rev Comput Chem 13:183–247

    Google Scholar 

  • Wang W, Donini O, Reyes CN, Kollman PA (2001) Biomolecular simulations. Annu Rev Biophys Biomol Struct 30:211–243

    Google Scholar 

  • Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    CAS  Google Scholar 

  • Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate ransporter homologue from Pyrcococcus horikoshii. Nature 431:811–818

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Australian Research Council. The MD simulations were performed using the APAC and AC3 high-performance computing facilities in Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgut Bastug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastug, T., Kuyucak, S. Test of molecular dynamics force fields in gramicidin A. Eur Biophys J 34, 377–382 (2005). https://doi.org/10.1007/s00249-005-0463-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-005-0463-2

Keywords

Navigation