Skip to main content

Advertisement

Log in

Molecular dynamics simulations on HIV-1 Tat

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are used to investigate dynamics and intramolecular interactions of the HIV-1 transactivator (Tat) in aqueous solution. The calculations are based on the AMBER force field with particle mesh Ewald treatment for long-range electrostatics. The Tat structure exhibits a large flexibility, consistent with its absence of secondary structure elements. From an analysis of the correlation matrix and of electrostatic interactions we suggest that segments expressed by the two exons (amino acids 1–72 and 73–86, respectively) exhibit rather separated dynamic and energetic properties. We also identify intramolecular interactions of importance for structure stabilization. In particular, significant electrostatic interactions are recognized between the N-terminus and the basic domain of the protein, consistent with site-directed mutagenesis performed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3a–d
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Since Glu has the same charge as Asp and it has a longer side chain, its interactions with the ARD residues are expected to be at least as strong as those formed by Asp2 in the HV1Z2 variant.

References

  • Aboul-ela F, Karn J, Varani G. (1995) The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J Mol Biol 253:313–332

    Article  CAS  PubMed  Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York, pp 54–55

  • Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17:412–425

    CAS  PubMed  Google Scholar 

  • Bayer P, Kraft M, Ejchart A, Westendorp M, Frank R, Rosch P (1995) Structural studies of HIV-1 Tat protein. J Mol Biol 247:529–535

    CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  • Berkhout B, Jeang KT (1989) Trans activation of human immunodeficiency virus type 1 is sequence specific for both the single-stranded bulge and loop of the trans-acting-responsive hairpin: a quantitative analysis. J Virol 63:5501–5504

    PubMed  Google Scholar 

  • Berkhout B, Silverman RH, Jeang KT (1989) Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59:273–282

    CAS  PubMed  Google Scholar 

  • Brown JA, Howcroft TK, Singer DS (1998) HIV Tat protein requirements for transactivation and repression of transcription are separable. J Acquir Immune Defic Syndr Hum Retrovirol 17:9–16

    CAS  PubMed  Google Scholar 

  • Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252:1167–1171

    CAS  PubMed  Google Scholar 

  • Carroll R, Martarano L, Derse D (1991) Identification of lentivirus tat functional domains through generation of equine infectious anemia virus/human immunodeficiency virus type 1 tat gene chimeras. J Virol 65:3460–3467

    CAS  PubMed  Google Scholar 

  • Case DA, Pearlman DA, Caldwell JW, Cheatham TE III, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley MF, Ferguson DM, Radmer RJ, Singh UC, Weiner PK, Kollman PA (1995) AMBER 5. University of California, San Francisco

  • Churcher MJ, Lamont C, Hamy F, Dingwall C, Green SM, Lowe AD, Butler JG, Gait MJ, Karn J (1993) High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region. J Mol Biol 230:90–110

    CAS  PubMed  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    CAS  Google Scholar 

  • Darden TA, York D (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10094

    Article  CAS  Google Scholar 

  • Daune M (1999) Molecular biophysics. Oxford University Press, New York, p 10

  • Derse D, Carvalho M, Carroll R, Peterlin BM (1991) A minimal lentivirus Tat. J Virol 65:7012–7015

    CAS  PubMed  Google Scholar 

  • Dorn P, DaSilva L, Martarano L, Derse D (1990) Equine infectious anemia virus tat: insights into the structure, function, and evolution of lentivirus trans-activator proteins. J Virol 64:1616–1624

    CAS  PubMed  Google Scholar 

  • Felber BK, Pavlakis GN (1988) A quantitative bioassay for HIV-1 based on trans-activation. Science 239:184–187

    CAS  PubMed  Google Scholar 

  • Frankel AD, Bredt DS, Pabo CO (1988a) Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 240:70–73

    CAS  PubMed  Google Scholar 

  • Frankel AD, Chen L, Cotter RJ, Pabo CO (1988b) Dimerization of the tat protein from human immunodeficiency virus: a cysteine-rich peptide mimics the normal metal-linked dimer interface. Proc Natl Acad Sci USA 85:6297–6300

    CAS  PubMed  Google Scholar 

  • Frankel AD, Biancalana S, Hudson D (1989) Activity of synthetic peptides from the Tat protein of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86:7397–7401

    CAS  PubMed  Google Scholar 

  • Friedler A, Friedler D, Luedtke NW, Tor Y, Loyter A, Gilon C (2000) Development of a functional backbone cyclic mimetic of the HIV-1 Tat arginine-rich motif. J Biol Chem 275:23783–23789

    CAS  PubMed  Google Scholar 

  • Garber ME, Wei P, KewalRamani VN, Mayall TP, Herrmann CH, Rice AP, Littman DR, Jones KA (1998) The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 12:3512–3527

    CAS  PubMed  Google Scholar 

  • Garcia AE (1992) Large-amplitude nonlinear motions in proteins. Phys Rev Lett 68:2696–2699

    CAS  PubMed  Google Scholar 

  • Huang HW, Wang KT. (1996) Structural characterization of the metal binding site in the cysteine- rich region of HIV-1 Tat protein. Biochem Biophys Res Commun 227:615–621

    CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    CAS  Google Scholar 

  • Karn J (1999) Tackling Tat. J Mol Biol 293:235–254

    Article  CAS  PubMed  Google Scholar 

  • Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G (1989) Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res 17:3551–3561

    CAS  PubMed  Google Scholar 

  • Leach AR (2001) Molecular modelling, 2nd edn. Pearson, Harlow, Essex, UK, p 491

  • Pantano S, Tyagi M, Giacca M, Carloni P (2002) Amino acid modification in the HIV-1 Tat basic domain: insights from molecular dynamics and in vivo functional studies. J Mol Biol 318:1331–1339

    CAS  PubMed  Google Scholar 

  • Radkiewicz J, Brooks C (2000) Protein dynamics in enzymatic catalysis: exploration of dihydrofolate reductase. J Am Chem Soc 122:225–231

    CAS  Google Scholar 

  • Rana TM, Jeang KT (1999) Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys 365:175–185

    CAS  PubMed  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical Integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Aniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, New York

  • Slice LW, Codner E, Antelman D, Holly M, Wegrzynski B, Wang J, Toome V, Hsu MC, Nalin CM (1992) Characterization of recombinant HIV-1 Tat and its interaction with TAR RNA. Biochemistry 31:12062–12068

    CAS  PubMed  Google Scholar 

  • Smith DE, Deng L (1994) Computer simulations of NaCl association in polarizable water. J Chem Phys 100:3757–3766

    CAS  Google Scholar 

  • Sodroski J, Rosen C, Wong-Staal F, Salahuddin SZ, Popovic M, Arya S, Gallo RC, Haseltine WA (1985) Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science 227:171–173

    CAS  PubMed  Google Scholar 

  • Verhoef K, Bauer M, Meyerhans A, Berkhout B (1998) On the role of the second coding exon of the HIV-1 Tat protein in virus replication and MHC class I downregulation. AIDS Res Hum Retroviruses 14:1553–1559

    CAS  PubMed  Google Scholar 

  • Vives E, Charneau P, van Rietschoten J, Rochat H, Bahraoui E (1994) Effects of the Tat basic domain on human immunodeficiency virus type 1 transactivation, using chemically synthesized Tat protein and Tat peptides. J Virol 68:3343–3353

    CAS  PubMed  Google Scholar 

  • Weissman JD, Brown JA, Howcroft TK, Hwang J, Chawla A, Roche PA, Schiltz L, Nakatani Y, Singer DS (1998) HIV-1 tat binds TAFII250 and represses TAFII250-dependent transcription of major histocompatibility class I genes. Proc Natl Acad Sci USA 95:11601–11606

    Article  CAS  PubMed  Google Scholar 

  • Wrenger S, Faust J, Mrestani-Klaus C, Fengler A, Stockel-Maschek A, Lorey S, Kahne T, Brandt W, Neubert K, Ansorge S, Reinhold D (2000) Down-regulation of T cell activation following inhibition of dipeptidyl peptidase IV/CD26 by the N-terminal part of the thromboxane A2 receptor. J Biol Chem 275:22180–22186

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

COFIN-MURST is acknowledged for financial support. We thank U. Rothlisberger and L. Guidoni for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Carloni.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantano, S., Tyagi, M., Giacca, M. et al. Molecular dynamics simulations on HIV-1 Tat. Eur Biophys J 33, 344–351 (2004). https://doi.org/10.1007/s00249-003-0358-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0358-z

Keywords

Navigation