Skip to main content
Log in

Distribution and Genetic Diversity of Genes from Brazilian Bacillus thuringiensis Strains Toxic to Agricultural Insect Pests Revealed by Real-Time PCR

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis is a Gram-positive aerobic bacterium and the most used biopesticide worldwide. Given the importance of B. thuringiensis strain characterization for the development of new bioinsecticides or transgenic events and the identification and classification of new B. thuringiensis genes and strains to understand its distribution and diversity, this work is aimed at creating a gene identification system based on qPCR reactions utilizing core B. thuringiensis genes cry1, cry2, cry3, cry4, cry5, app6, cry7, cry8, cry9, cry10, cry11, vpb1, vpa2, vip3, cyt1, and cyt2 for the characterization of 257 strains of B. thuringiensis. This system was based on the Invertebrate Bacteria Collection from Embrapa Genetic Resources and Biotechnology and analyzed (a) the degree of correlation between the distribution of these strains and the origin of the substrate from which the strain was isolated and (b) between its distribution and geoclimatic conditions. This study made it possible to observe that the cry1, cry2, and vip3A/B genes occur homogeneously in the Brazilian territory, and some genes are found in specific regions. The biggest reservoir of variability is within B. thuringiensis strains in each region, and it is suggested that both geoclimatic conditions and regional crops interfere with the genetic diversity of the B. thuringiensis strains present in the region, and B. thuringiensis strains can constantly exchange genetic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed' during the current study are available from the corresponding author on request.

References

  1. Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29(2):303–329. https://doi.org/10.1016/j.femsre.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  2. Maagd RA, De Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17(4):193–199. https://doi.org/10.1016/s0168-9525(01)02237-5

    Article  PubMed  Google Scholar 

  3. Crickmore N, Berry C, Panneerselvam S, Mishra R, Connor TR, Bonning BC (2020) A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J Invertebr Pathol 186:107438. https://doi.org/10.1016/j.jip.2020.107438

    Article  CAS  PubMed  Google Scholar 

  4. Rabinovicth L, Oliveira EJDe (2015) Coletânea de procedimentos técnicos e metodologias empregadas para o estudo de Bacillus e gêneros esporulados aeróbios correlatos. Montenegro Comunicação, Rio de Janeiro

  5. Nair K, Al-Thani R, Al-Thani D, Al-Yafei F, Ahmed T, Jaoua S (2018) Diversity of Bacillus thuringiensis strains from Qatar as shown by crystal morphology, δ-endotoxins and cry gene content. Front Microbiol 9:1–10. https://doi.org/10.3389/fmicb.2018.00708

    Article  CAS  Google Scholar 

  6. Uribe D, Martinez W, Cerón J (2003) Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J Invertebr Pathol 82(2):119–127. https://doi.org/10.1016/s0022-2011(02)00195-7

    Article  CAS  PubMed  Google Scholar 

  7. Sauka DH, Benintende GB (2017) Diversity and distribution of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Argentina. Rev Argent Microbiol 49(3):273–281. https://doi.org/10.1016/j.ram.2017.02.003

    Article  PubMed  Google Scholar 

  8. Jain D, Sunda SD, Sanadhya S, Nath DJ, Khandelwal SK (2017) Molecular characterization and PCR-based screening of cry genes from Bacillus thuringiensis strains. 3. Biotech 7(1):1–8. https://doi.org/10.1007/s13205-016-0583-7

    Article  Google Scholar 

  9. Yilmaz S, Ayvaz A, Azizoglu U (2017) Diversity and distribution of cry genes in native Bacillus thuringiensis strains isolated from wild ecological areas of East-Mediterranean Region of Turkey. Trop Ecol 58(3):605–610

    CAS  Google Scholar 

  10. Boonmee K, Thammasittirong SNR, Thammasittirong A (2019) Molecular characterization of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Thailand. 3. Biotech 9(4):1–11. https://doi.org/10.1007/s13205-019-1646-3

    Article  Google Scholar 

  11. Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6(12):3296–3325. https://doi.org/10.3390/toxins6123296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caballero A, Toro MA (2002) Analysis of genetic diversity for the management of conserved subdivided populations. Conserv Genet 3:289–299. https://doi.org/10.1023/A:1019956205473

    Article  CAS  Google Scholar 

  13. Caballero A, Rodriguez-Ramilo ST, Avila V, Fernández J (2010) Management of genetic diversity of subdivided populations in conservation programmes. Conserv Genet 11:409–419. https://doi.org/10.1534/genetics.107.083816

    Article  Google Scholar 

  14. Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435. https://doi.org/10.1016/j.toxicon.2006.11.022

    Article  CAS  PubMed  Google Scholar 

  15. Queiroz PR, Posso MC, Martins ES, Grynberg P, Togawa RC, Monnerat RG (2022) Identification of cry genes in Bacillus thuringiensis by multiplex real-time PCR. J Microbiol Methods 205:106665. https://doi.org/10.1016/j.mimet.2022.106665

    Article  CAS  PubMed  Google Scholar 

  16. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1104. https://doi.org/10.2144/00286ir01

    Article  CAS  PubMed  Google Scholar 

  18. Monnerat RG, Batista AC, Medeiros PT, Martins ÉS, Melatti VM, Praça LB, Dumas VF, Morinaga C, Demo C, Gomes ACM, Falcão R, Siqueira CB, Silva-Werneck JO, Berry C (2007) Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biol Control 41(3):291–295. https://doi.org/10.1016/j.biocontrol.2006.11.008

    Article  Google Scholar 

  19. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  20. Zhu L, Peng D, Wang Y, Ye W, Zheng J, Zhao C, Han D, Geng C, Ruan L, He J, Yu Z, Sun M (2015) Genomic and transcriptomic insights into the efficient entomopathogenicity of Bacillus thuringiensis. Sci Rep 28(5):14129. https://doi.org/10.1038/srep14129

    Article  CAS  Google Scholar 

  21. Armengol G, Escobar MC, Maldonado ME, Orduz S (2007) Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. J Appl Microbiol 102(1):77–88. https://doi.org/10.1111/j.1365-2672.2006.03063.x

    Article  CAS  PubMed  Google Scholar 

  22. Zothansanga R, Senthilkumar N, Gurusubramanian G (2016) Diversity and toxicity of Bacillus thuringiensis from shifting cultivation (jhum) habitat. Biocontrol Sci 21(2):99–111. https://doi.org/10.4265/bio.21.99

    Article  CAS  PubMed  Google Scholar 

  23. Seifinejad A, Jouzani GRS, Hosseinzadeh A, Abdmishani C (2008) Characterization of Lepidoptera active cry and vip genes in Iranian Bacillus thuringiensis strain collection. Biol Control 44(2):216–226. https://doi.org/10.1016/j.biocontrol.2007.09.010

    Article  CAS  Google Scholar 

  24. Lone SA, Yadav R, Malik A, Padaria JC (2016) Molecular and insecticidal characterization of Vip3A protein producing Bacillus thuringiensis strains toxic against Helicoverpa armigera (Lepidoptera: Noctuidae). Can J Microbiol 62(2):179–190. https://doi.org/10.1139/cjm-2015-0328

    Article  CAS  PubMed  Google Scholar 

  25. Salehi Jouzani G, Seifinejad A, Saeedizadeh A, Nazarian A, Yousefloo M, Soheilivand S, Mousivand M, Jahangiri R, Yazdani M, Amiri RM, Akbari S (2008) Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes. Can J Microbiol 54(10):812–822. https://doi.org/10.1139/w08-074

    Article  CAS  PubMed  Google Scholar 

  26. Yu X, Zheng A, Zhu J, Wang S, Wang L, Deng Q, Li S, Liu H, Li P (2011) Characterization of vegetative insecticidal protein vip genes of Bacillus thuringiensis from Sichuan Basin in China. Curr Microbiol 62(3):752–757. https://doi.org/10.1007/s00284-010-9782-3

    Article  CAS  PubMed  Google Scholar 

  27. Wang JH, Boets A, Rie JV, Ren GX (2003) Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. J Invertebr Pathol 82:63–71. https://doi.org/10.1016/s0022-2011(02)00202-1

    Article  CAS  PubMed  Google Scholar 

  28. Adang MJ, Crickmore N, Jurat-Fuentes JL (2014) Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. 1st edn. Academic Press, pp 39-87. https://doi.org/10.1016/B978-0-12-800197-4.00002-6

  29. Arango JA, Romero M, Orduz S (2002) Diversity of Bacillus thuringiensis strains from Colombia with insecticidal activity against Spodoptera frugiperda (Lepidoptera: Noctuidae). J Appl Microbiol 92(3):466–474. https://doi.org/10.1046/j.1365-2672.2002.01545.x

    Article  CAS  PubMed  Google Scholar 

  30. Gasques JG (2017) Sources of growth in Brazilian agriculture: total factor productivity. EuroChoices 16(1):24–25. https://doi.org/10.1111/1746-692X.12146

    Article  Google Scholar 

Download references

Funding

This study was funded by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and Embrapa Genetic Resources and Biotechnology.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The experiments were conducted by Marcelo Rodrigues Berçot and Gabriela Teodoro Rocha. Rose Gomes Monnerat was responsible for funding acquisition, project supervision, and management. Paulo Roberto Martins Queiroz and Érica Soares Martins were responsible for conceptualization and writing—review. The bioinformatic data were analyzed by Priscila Grynberg and Roberto Togawa. The first draft of the manuscript was written by Marcelo Rodrigues Berçot, and all authors commented on previous versions of the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Paulo Roberto Martins Queiroz.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

ESM 1

The online version contains supplementary material available at XXXX. (PDF 2422 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berçot, M.R., Queiroz, P.R.M., Grynberg, P. et al. Distribution and Genetic Diversity of Genes from Brazilian Bacillus thuringiensis Strains Toxic to Agricultural Insect Pests Revealed by Real-Time PCR. Microb Ecol 86, 2515–2526 (2023). https://doi.org/10.1007/s00248-023-02255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02255-1

Keywords

Navigation