Skip to main content

Advertisement

Log in

Long-Read Sequencing Analysis Revealed the Impact of Forest Conversion on Soil Fungal Diversity in Limu Mountain, Hainan

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Soil fungi are essential to soil microorganisms that play an important role in the ecosystem’s soil carbon cycle and mineral nutrient transformation. Understanding the structural characteristics and diversity of soil fungal communities helps understand the health of forest ecosystems. The transition from tropical rainforest to artificial forest greatly impacts the composition and diversity of fungal communities. Hainan Limushan tropical rainforest National Park has a large area of artificial forests. Ecologists have conducted in-depth studies on the succession of animals and plants to regenerate tropical rainforests. There are few reports on the diversity of soil fungi and its influencing factors in the succession of tropical rainforests in Limu Mountain. In this study, 44 soil samples from five different stands were collected in the tropical rainforest of Limushan, Hainan. High-throughput sequencing of rDNA in its region was used to analyze fungal communities and study their α and β diversity. Analysis of variance and multiple regression models was used to analyze soil variables and fungal functional groups to determine the effects of interaction between fungi and environmental factors. A total of 273,996 reads and 1290 operational taxonomic units (OTUs) were obtained, belonging to 418 species, 325 genera, 159 families, eight phyla, 30 classes, and 73 orders. The results showed that the composition of soil fungal communities in the five stands was similar, with ascomycetes accounting for 70.5% and basidiomycetes accounting for 14.7%. α and β diversity analysis showed that soil fungi in Limushan tropical rainforest had high abundance and diversity. Multiple regression analysis between soil variables and functional groups showed that organic matter, TN, TP, TK, and AK were excellent predictors for soil fungi. TP was the strongest predictor in all functional groups except soil saprotroph. Organic matter and total nitrogen were the strongest predictors of soil rot. The transformation from tropical rainforest to artificial forest in Limushan did not change the soil fungal community structure, but the richness and diversity of soil fungi changed. The forest transformation did not lead to decreased soil fungal abundance and diversity. Different vegetation types and soil properties affect the diversity of soil fungal communities. We found that Caribbean pine plantations can improve soil fungal diversity, while long-term Eucalyptus spp. plantations may reduce soil fungal diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aggarwal R, Sharma S, Gupta S et al (2014) development of conventional and real time PCR assay for the rapid detection and quantification of a biocontrol agent, Chaetomium globosum[J]. Journal of Plant Pathology 96(3):477–485

    Google Scholar 

  2. Romanowicz KJ, Freedman ZB, Upchurch RA et al (2016) Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture[J]. FEMS Microbiology Ecology 92(10):fiw149

    Article  PubMed  Google Scholar 

  3. Mueller GM, Schmit JP (2007) Fungal biodiversity: what do we know? What can we predict?[J]. Biodivers Conserv 16(1):1–5

    Article  Google Scholar 

  4. Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi[J]. Science 346(6213):1256688

  5. Hobbie EA, Macko SA, Shugart HH (1999) Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence[J]. Oecologia 118(3):353–360

    Article  PubMed  Google Scholar 

  6. Voríšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes[J]. Isme Journal 7(3):477–486

    Article  PubMed  Google Scholar 

  7. Bell T, Newman JA, Silverman BW et al (2005) The contribution of species richness and composition to bacterial services[J]. Nature 436(7054):1157–1160

    Article  CAS  PubMed  Google Scholar 

  8. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities[J]. Proc Natl Acad Sci 103(3):626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldfarb KC, Karaoz U, Hanson CA et al (2011) Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance[J]. Front Microbiol 2:94

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lauber CL, Strickland MS, Bradford MA et al (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biol Biochem 40(9):2407–2415

    Article  CAS  Google Scholar 

  11. Gömöryová E, Ujházy K, Martinák M et al (2013) Soil microbial community response to variation in vegetation and abiotic environment in a temperate old-growth forest[J]. Appl Soil Ecol 68:10–19

    Article  Google Scholar 

  12. Kristin A, Miranda H (2013) The root microbiota—a fingerprint in the soil?[J]. Plant Soil 370(1):671–686

    Article  CAS  Google Scholar 

  13. Bakker MG, Schlatter DC, Otto-Hanson L et al (2014) Diffuse symbioses: roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome[J]. Mol Ecol 23(6):1571–1583

    Article  PubMed  Google Scholar 

  14. Leff JW, Nemergut DR, Grandy AS et al (2012) The effects of soil bacterial community structure on decomposition in a tropical rain forest[J]. Ecosystems 15(2):284–298

    Article  CAS  Google Scholar 

  15. Thakur MP, Phillips HRP, Brose U et al (2020) Towards an integrative understanding of soil biodiversity[J]. Biol Rev 95(2):350–364

    Article  PubMed  Google Scholar 

  16. Bardgett RD, Van Der Putten WH (2014) Belowground biodiversity and ecosystem functioning[J]. Nature 515(7528):505–511

    Article  CAS  PubMed  Google Scholar 

  17. Lindahl BD, Nilsson RH, Tedersoo L et al (2013) Fungal community analysis by high-throughput sequencing of amplified markers–a user’s guide[J]. New Phytol 199(1):288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson SJB, Elias D, Johnson D et al (2020) Soil fungal community characteristics and mycelial production across a disturbance gradient in lowland dipterocarp rainforest in Borneo[J]. Front For Glob Change 3:64

    Article  Google Scholar 

  19. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities[J]. Nature 403(6772):853–858

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Tan Z, Song Q et al (2010) Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest[J]. Atmos Environ 44(32):3886–3893

    Article  CAS  Google Scholar 

  21. Kim E, Piao D, Lee J, Lee WK et al (2016) Approach to voxel-based carbon stock quanticiation using LiDAR data in tropical rainforest, Brunei[C]//EGU General Assembly Conference Abstracts EPSC2016–16266

  22. Hiscox J, Savoury M, Müller CT et al (2015) Priority effects during fungal community establishment in beech wood[J]. ISME J 9(10):2246–2260

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ponge JF (2013) Plant–soil feedbacks mediated by humus forms: a review[J]. Soil Biol Biochem 57:1048–1060

    Article  CAS  Google Scholar 

  24. Pajares S, Bohannan BJM, Souza V (1805) Editorial: the role of microbial communities in tropical ecosystems[J]. Front Microbiol 2016:7

    Google Scholar 

  25. Ding J, Jiang X, Guan D et al (2017) Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols[J]. Appl Soil Ecol 111:114–122

    Article  Google Scholar 

  26. Browne HP, Forster SC, Anonye BO et al (2016) Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation[J]. Nature 533(7604):543–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Watterson WJ, Tanyeri M, Watson AR et al (2020) Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes[J]. Elife 9:e56998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang LB, Sui X, Zhu DG et al (2017) Study on fungal communities characteristics of different Larix gmelini forest typesin cold temperate zone[J]. J Cent South Univ For Technol 37:76–84

    Google Scholar 

  29. Zhang T, Wang NF, Liu HY et al (2016) Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund Region, Svalbard (High Arctic)[J]. Front Microbiol 7:227

    PubMed  PubMed Central  Google Scholar 

  30. Nilsson RH, Anslan S, Bahram M et al (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi[J]. Nat Rev Microbiol 17(2):95–109

    Article  CAS  PubMed  Google Scholar 

  31. Grossart HP, Van den Wyngaert S, Kagami M et al (2019) Fungi in aquatic ecosystems[J]. Nat Rev Microbiol 17(6):339–354

    Article  CAS  PubMed  Google Scholar 

  32. Nilsson RH, Larsson KH, Taylor AFS et al (2018) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications[J]. Nucleic Acids Res 47(D1):D259–D264

    Article  PubMed Central  Google Scholar 

  33. Baldrian P, Větrovský T, Lepinay C et al (2021) High-throughput sequencing view on the magnitude of global fungal diversity[J]. Fungal Divers 114(1):539–547

  34. Horn S, Hempel S, Verbruggen E et al (2017) Linking the community structure of arbuscular mycorrhizal fungi and plants: a story of interdependence?[J]. ISME J 11(6):1400–1411

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen SY, Li JJ, Lin J et al (2018) High-throughput sequencing fungal community structures in aging tobacco strips from different growing areas and stalk positions[J]. Tob Sci Technol 51(4):12–19

    CAS  Google Scholar 

  36. Song P, Tanabe S, Yi R et al (2018) Fungal community structure at pelagic and littoral sites in Lake Biwa determined with high-throughput sequencing[J]. Limnology 19(2):241–251

    Article  Google Scholar 

  37. Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi[J]. Proc Natl Acad Sci 109(16):6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pawlowski J, Audic S, Adl S et al (2012) CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms[J]. PLoS Biol 10(11):e1001419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet journal 17(1):10–12

    Article  Google Scholar 

  40. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Caron DA, Countway PD, Savai P et al (2009) Defining DNA-based operational taxonomic units for microbial-eukaryote ecology[J]. Appl Environ Microbiol 75(18):5797–5808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Quast C, Pruesse E, Yilmaz P et al (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Res 41(D1):D590–D596

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kõljalg U, Nilsson R H, Abarenkov K et al (2013) Towards a unified paradigm for sequence‐based identification of fungi[J]. Mol Ecol 22(21):5271–5277

  44. Kõljalg U, Larsson KH, Abarenkov K et al (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi[J]. New Phytol 166(3):1063–1068

    Article  PubMed  Google Scholar 

  45. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nat Biotechnol 37(8):852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu S, García-Palacios P, Tedersoo L et al (2022) Phylotype diversity within soil fungal functional groups drives ecosystem stability[J]. Nat Ecol Evol 6:900–909

  48. Põlme S, Abarenkov K, Henrik Nilsson R et al (2020) FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles[J]. Fungal Diversity 105(1):1–16

    Article  Google Scholar 

  49. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation[J]. Genome Biol 12(6):1–18

    Article  Google Scholar 

  50. James TY, Kauff F, Schoch CL et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny[J]. Nature 443(7113):818–822

    Article  CAS  PubMed  Google Scholar 

  51. Shen XX, Steenwyk JL, LaBella AL et al (2020) Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota[J]. Sci Adv 6(45):eabd0079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lan G, Li Y, Jatoi MT et al (2017) change in soil microbial community compositions and diversity following the conversion of tropical forest to Hevea brasiliensis (X) plantations in Xishuangbanan, Southwest China[J]. Trop Conserv Sci 10:1940082917733230

    Article  Google Scholar 

  53. Kerfahi D, Tripathi BM, Dong K et al (2016) Rainforest conversion to Hevea brasiliensis (X) plantation may not result in lower soil diversity of bacteria, fungi, and nematodes[J]. Microb Ecol 72(2):359–371

    Article  PubMed  Google Scholar 

  54. Mueller RC, Rodrigues JLM, Nüsslein K et al (2016) Land use change in the Amazon rain forest favours generalist fungi[J]. Funct Ecol 30(11):1845–1853

    Article  Google Scholar 

  55. Brinkmann N, Schneider D, Sahner J et al (2019) Intensive tropical land use massively shifts soil fungal communities[J]. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  56. Rouphael Y, Franken P, Schneider C et al (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops[J]. Sci Hortic 196:91–108

    Article  Google Scholar 

  57. Frąc M, Hannula SE, Bełka M et al (2018) Fungal biodiversity and their role in soil health[J]. Front Microbiol 9:707

    Article  PubMed  PubMed Central  Google Scholar 

  58. Canini F, Zucconi L, Pacelli C et al (2019) vegetation, pH and water content as main factors for shaping fungal richness, community composition and functional guilds distribution in soils of western Greenland[J]. Front Microbiol 10:2348

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jiang S, Xing Y, Liu G et al (2021) Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests[J]. Soil Biol Biochem 161:108393

    Article  CAS  Google Scholar 

  60. Ni Y, Yang T, Zhang K et al (2018) Fungal communities along a small-scale elevational gradient in an alpine tundra are determined by soil carbon nitrogen ratios[J]. Front Microbiol 9:1815

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chai Y, Cao Y, Yue M et al (2019) Soil abiotic properties and plant functional traits mediate associations between soil microbial and plant communities during a secondary forest succession on the Loess Plateau[J]. Front Microbiol 10:895

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li C, Shi LL, Ostermann A et al (2015) Indigenous trees restore soil microbial biomass at faster rates than exotic species[J]. Plant Soil 396(1):151–161

    Article  CAS  Google Scholar 

  63. Talbot JM, Martin F, Kohler A et al (2015) Functional guild classification predicts the enzymatic role of fungi in litter and soil biogeochemistry[J]. Soil Biol Biochem 88:441–456

    Article  CAS  Google Scholar 

  64. Sahner J, Budi SW, Barus H et al (2015) Degradation of root community traits as indicator for transformation of tropical lowland rain forests into oil palm and rubber plantations[J]. PLoS ONE 10(9):e0138077

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yang T, Adams JM, Shi Y et al (2017) Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity[J]. New Phytol 215(2):756–765

    Article  CAS  PubMed  Google Scholar 

  66. Thomson BC, Tisserant E, Plassart P et al (2015) Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites[J]. Soil Biol Biochem 88:403–413

    Article  CAS  Google Scholar 

  67. Kivlin SN, Winston GC, Goulden ML et al (2014) Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales[J]. Fungal Ecol 12:14–25

    Article  Google Scholar 

  68. Phosri C, Polme S, Taylor AFS et al (2012) diversity and community composition of ectomycorrhizal fungi in a dry deciduous dipterocarp forest in Thailand[J]. Biodivers Conserv 21(9):2287–2298

    Article  Google Scholar 

  69. Sardans J, Peñuelas J (2013) Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change[J]. Plant Soil 365(1):1–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cavard X, Macdonald SE, Bergeron Y et al (2011) Importance of mixedwoods for biodiversity conservation: Evidence for understory plants, songbirds, soil fauna, and ectomycorrhizae in northern forests[J]. Environ Rev 19:142–161

    Article  Google Scholar 

  71. Suz LM, Kallow S, Reed K et al (2017) Pine mycorrhizal communities in pure and mixed pine-oak forests: abiotic environment trumps neighboring oak host effects[J]. For Ecol Manage 406:370–380

    Article  Google Scholar 

  72. Baruch Z, Nozawa S, Johnson E et al (2019) Ecosystem dynamics and services of a paired Neotropical montane forest and pine plantation[J]. Rev Biol Trop 67(1):24–35

    Article  Google Scholar 

  73. Lebron I, Robinson DA, Oatham M et al (2012) Soil water repellency and pH soil change under tropical pine plantations compared with native tropical forest[J]. J Hydrol 414:194–200

    Article  Google Scholar 

  74. Castaño C, Dejene T, Mediavilla O et al (2019) Changes in fungal diversity and composition along a chronosequence of Eucalyptus grandis plantations in Ethiopia[J]. Fungal Ecol 39:328–335

    Article  Google Scholar 

  75. Kohout P, Charvátová M, Štursová M et al (2018) Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots[J]. ISME J 12(3):692–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kohout P, Sudová R, Brabcová V et al (2021) Forest microhabitat affects succession of fungal communities on decomposing fine tree roots[J]. Front Microbiol 12:53

    Article  Google Scholar 

  77. Xu Y, Li C, Zhu Y et al (2022) The shifts in soil microbial community and association network induced by successive planting of Eucalyptus plantations[J]. For Ecol Manag 505:119877

  78. Zhu L, Wang X, Chen F et al (2019) Effects of the successive planting of Eucalyptus urophylla on soil bacterial and fungal community structure, diversity, microbial biomass, and enzyme activity[J]. Land Degrad Dev 30(6):636–646

    Article  Google Scholar 

  79. Hanif M, Guo Z, Moniruzzaman M et al (2019) Plant taxonomic diversity better explains soil fungal and bacterial diversity than functional diversity in restored forest ecosystems[J]. Plants 8(11):479

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability[J]. Trends Ecol Evol 31(6):440–452

    Article  PubMed  Google Scholar 

  81. Bhattacharyya SS, Ros GH, Furtak K et al (2022) Soil carbon sequestration–an interplay between soil microbial community and soil organic matter dynamics[J]. Science of The Total Environment 152928

  82. Malyan SK, Kumar A, Baram S et al (2019) Role of fungi in climate change abatement through carbon sequestration[M]//Recent advancement in white biotechnology through fungi. Springer, Cham, pp 283–295

    Book  Google Scholar 

  83. He D, Shen W, Eberwein J et al (2017) diversity and co-occurrence network of soil fungi are more responsive than those of bacteria to shifts in precipitation seasonality in a subtropical forest[J]. Soil Biol Biochem 115:499–510

    Article  CAS  Google Scholar 

  84. Buscardo E, Souza RC, Meir P et al (2021) Effects of natural and experimental drought on soil fungi and biogeochemistry in an Amazon rain forest[J]. Commu Earth Environ 2(1):1–12

    Google Scholar 

  85. Song Z, Schlatter D, Kennedy P et al (2015) Effort versus reward: preparing samples for fungal community characterization in high-throughput sequencing surveys of soils[J]. PLOS ONE 10(5):e0127234

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yang Y, Dou Y, Huang Y et al (2017) Links between soil fungal diversity and plant and soil properties on the Loess Plateau[J]. Front Microbiol 8:2198

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liu J, Dang P, Gao Y et al (2018) Effects of tree species and soil properties on the composition and diversity of the soil bacterial community following afforestation[J]. For Ecol Manage 427:342–349

    Article  Google Scholar 

  88. Urbanová M, Šnajdr J, Baldrian P (2015) Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees[J]. Soil Biol Biochem 84:53–64

    Article  Google Scholar 

  89. Nagati M, Roy M, Manzi S et al (2018) impact of local forest composition on soil fungal communities in a mixed boreal forest[J]. Plant Soil 432(1):345–357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous reviewers for their thoughtful comments and constructive suggestions towards improving our manuscript.

Funding

This work was supported by special basic scientific research work of technological innovation in Hainan scientific research institutes (SQKY2022-0003). This funding source funded the cost of sample collection and sequencing analysis.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Hui-Ying Gui and Zhao-Jia Li performed material preparation and data collection. Xiao-Feng Zhang and Su-Ling Chen analyzed the data and made figures and tables. Fa-Zhi Fang and Xiao-Feng Zhang wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Feng Zhang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, FZ., Chen, SL., Gui, HY. et al. Long-Read Sequencing Analysis Revealed the Impact of Forest Conversion on Soil Fungal Diversity in Limu Mountain, Hainan. Microb Ecol 86, 872–886 (2023). https://doi.org/10.1007/s00248-022-02129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02129-y

Keywords

Navigation