Skip to main content

Advertisement

Log in

Bacterial Communities Along Environmental Gradients in Tropical Soda Lakes

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Soda lake environments are known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effects of different environmental conditions of six adjacent soda lakes in the Pantanal biome (Mato Grosso do Sul state, Brazil) on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes into three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, which was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were associated with high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and with lower salinity and pH levels. Stress response metabolism was enhanced in OT and ET lakes and underrepresented in CVO lakes. The microbiome dataset of this study can serve as a baseline for restoring impacted soda lakes. Altogether, the results of this study demonstrate the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The sequence data (total of 36 metagenomes) have been deposited in the MG-RAST database under the project name Pantanal and accession numbers: mgp88859 (2018) and mgp92377 (2019).

References

  1. Gil JF, Mesa V, Estrada-Ortiz N, Lopez-Obando M, Gómez A, Plácido J (2021) Viruses in extreme environments, current overview, and biotechnological potential. Viruses 13(1):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809. https://doi.org/10.1007/s00792-014-0670-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tindall BJ (1988) Prokaryotic life in the alkaline, saline, athalassic environment. Halophilic bacteria 1:31–67

    Google Scholar 

  4. Szabó A, Korponai K, Kerepesi C, Somogyi B, Vörös L, Bartha D, Felföldi T (2017) Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21(3):639–649

    Article  PubMed  Google Scholar 

  5. Zorz JK, Sharp C, Kleiner M, Gordon PM, Pon RT, Dong X, Strous M (2019) A shared core microbiome in soda lakes separated by large distances. Nat Commun 10(1):1–10

    Article  CAS  Google Scholar 

  6. Felföldi T (2020) Microbial communities of soda lakes and pans in the Carpathian Basin: a review. Biologia Futura. 71(4):393–404

    Article  PubMed  Google Scholar 

  7. Vavourakis CD, Andrei AS, Mehrshad M, Ghai R, Sorokin DY, Muyzer G (2018) A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome 6(1):1–18

    Article  Google Scholar 

  8. Andreote AP, Dini-Andreote F, Rigonato J, Machineski GS, Souza BC, Barbiero L, Fiore MF (2018) Contrasting the genetic patterns of microbial communities in soda lakes with and without cyanobacterial bloom. Front Microbiol 9:244

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shu WS, Huang LN (2021) Microbial diversity in extreme environments. Nat Rev Microbiol.

  10. Danczak RE, Johnston MD, Kenah C, Slattery M, Wrighton KC, Wilkins MJ (2017) Members of the candidate phyla radiation are functionally differentiated by carbon-and nitrogen-cycling capabilities. Microbiome 5(1):1–14

    Article  Google Scholar 

  11. Guerreiro RL, Bergier I, McGlue MM, Warren LV, de Abreu UGP, Abrahão J, Assine ML (2019) The soda lakes of Nhecolândia: a conservation opportunity for the Pantanal wetlands. Perspectives in ecology and conservation 17(1):9–18

    Article  Google Scholar 

  12. Barbiero L, Neto MS, Braz RR, do Carmo JB, Rezende Filho AT, Mazzi E, Camargo PB, (2018) Biogeochemical diversity, O2-supersaturation and hot moments of GHG emissions from shallow alkaline lakes in the Pantanal of Nhecolândia, Brazil. Sci Total Environ 619:1420–1430

    Article  PubMed  Google Scholar 

  13. IBGE 2003 Integrated digital cartographic database of Brazil at 1:1,000,000 for ArcGis Desktop-ArcView. In: IBGE, editor

  14. Zhou L, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040

    Article  Google Scholar 

  15. Assine ML, Merino ER, Pupim FN, Warren LV, Guerreiro RL, McGlue MM (2015) Geology and geomorphology of the Pantanal basin. In: Bergier, I., Assine, M.L. (Eds.), Dynamics of the Pantanal wetland in South America. Springer International, Switzerland, pp. 23–50

  16. Thielen D, Schuchmann K-L, Ramoni-Perazzi P, Marquez M, Rojas W, Quintero JI, Marques MI (2020) Quo vadis Pantanal? Expected precipitation extremes and drought dynamics from changing sea surface temperature. PLoS ONE 15(1):e0227437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Funk C, Peterson P, Landsfeld M, Pedreros DV, Shukla J, Husak S, Rowland G, Harrison J, Hoell L, Michaelsen A, J, (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data 2(1):1–21

    Article  Google Scholar 

  18. Sarmento H, Unrein F, Isumbisho M, Stenuite S, Gasol JM, Descy J-P (2008) Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshw Biol 53:756–771

    Article  Google Scholar 

  19. Gasol JM, Del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64(2):197–224

    Article  Google Scholar 

  20. Arar EJ (1997) Method 446.0: In vitro determination of chlorophylls a, b, c + c and pheopigments in 1 2 marine and freshwater algae by visible spectrophotometry. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-15/005

  21. Komarek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes 4-nostocales. Archiv für Hydrobiologie Supplementband Monographische Beiträge 82(3):247–345

    Google Scholar 

  22. Martin M (2011) Cutadapt removes adapter sequences from high throughput sequencing reads. EMBnet Journal 17:10–12

    Article  Google Scholar 

  23. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data

  24. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30(5):614–620

    Article  CAS  PubMed  Google Scholar 

  25. Zhbannikov IY, Hunter SS, Foster JA, Settles ML (2017) SeqyClean: a pipeline for high-throughput sequence data preprocessing. In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (pp. 407–416)

  26. Meyer F, Paarman D, D’SouzaM OR, Glass EM, Kubal M, EdwardsRA, (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9(1):1–8

    Article  Google Scholar 

  27. Federation WE, Association APH (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC, USA

    Google Scholar 

  28. Ṙuz̆ic̆ka J, Hansen EH (1975) Flow injection analyses Part I A new concept of fast continuous flow analysis. Analytica Chimica Acta. 78(1):145–157

    Article  Google Scholar 

  29. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  30. Telliard WA (2001) Method 1684: Total, fixed, and volatile solids in water, solids, and biosolids. US Environmental Protection Agency, Washington

    Google Scholar 

  31. Williams WD, Sherwood JE (1994) Definition and measurement of salinity in salt lakes. Int J Salt Lake Res 3(1):53–63

    Article  Google Scholar 

  32. Team, RC (2013) R: A language and environment for statistical computing

  33. Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A, Scheibe S, Hothorn MT, 2016 Package ‘multcomp’. Simultaneous inference in general parametric models. Project for Statistical Computing, Vienna, Austria

  34. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara, RB, Oksanen, MJ, (2013) Package ‘vegan.’ Community ecol packag version 2(9):1–295

    Google Scholar 

  35. Kolde R, Kolde MR (2015) Package ‘pheatmap.’ R package 1(7):790

    Google Scholar 

  36. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J (2017) MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45(W1):W180–W188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, Gardner WS (2011) Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N and P) management strategy. Water Res 45(5):1973–1983

    Article  CAS  PubMed  Google Scholar 

  38. Genuário DB, Andreote APD, Vaz MGMV (2017) Fiore MF (2017) Heterocyte-forming cyanobacteria from Brazilian saline-alkaline lakes. Mol Phylogenet Evol 109:105–112

    Article  PubMed  Google Scholar 

  39. Santos KRS, Hentschke GS, Andreote APD, Laughinghouse HD IV, Ballot A, Novelo E, Fiore MF, Sant’Anna CL, (2018) Polyphasic characterization of newly isolated Anabaenopsis (Cyanobacteria) strains from tropical Brazil and Mexico. Phytotaxa 367(1):001–012

    Article  Google Scholar 

  40. Sinyukovich VN, Latysheva IV., Makukhin VL (2020) Catastrophic floods on the southern tributaries of Lake Baikal and features of the atmospheric circulation. Limnology and Freshwater Biology. 564–565

  41. Borzenko SV, Zamana LV, Usmanova LI (2018) Basic formation mechanisms of Lake Doroninskoye soda water, East Siberia. Russia Acta Geochimica 37(4):546–558

    Article  CAS  Google Scholar 

  42. Kritzberg ES, Ekström SM (2012) Increasing iron concentrations in surface waters–a factor behind brownification? Biogeosciences 9(4):1465–1478

    Article  CAS  Google Scholar 

  43. Xiao Y, Riise G (2021) Coupling between increased lake color and iron in boreal lakes. Sci Total Environ 767:145104

    Article  CAS  PubMed  Google Scholar 

  44. Kritzberg ES, Hasselquist EM, Škerlep M, Löfgren S, Olsson O, Stadmark J, Laudon H (2020) Browning of freshwaters: consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio. 49(2):375-390.t

    Article  PubMed  Google Scholar 

  45. Coskun M, Musaoglu N (2004) Investigation of rainfall-runoff modelling of the Van Lake catchment by using remote sensing and GIS integration. In International Archives of Photogrammetry Remote Sensing Commission VII, XXth ISPRS Congress, Istanbul (pp. 12–23)

  46. Klimaszyk P, Brzeg A, Rzymski P, Piotrowicz R (2015) Black spots for aquatic and terrestrial ecosystems: impact of a perennial cormorant colony on the environment. Sci Total Environ 517:222–231

    Article  CAS  PubMed  Google Scholar 

  47. Kritzberg ES, Cole JJ, Pace MM, Granéli W (2006) Bacterial growth on allochthonous carbon in humic and nutrient-enriched lakes: results from whole-lake 13C addition experiments. Ecosystems 9(3):489–499

    Article  CAS  Google Scholar 

  48. Vo¨ro¨s L, Gulyas P, Nemeth J (1991) Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Int Rev Gesamten Hydrobiol 76:617–629

    Article  Google Scholar 

  49. Menéndez-Serra M, Triadó-Margarit X, Casamayor EO (2021) Ecological and metabolic thresholds in the bacterial, protist, and fungal microbiome of ephemeral saline lakes (Monegros Desert, Spain). Microb Ecol 82(4):885–896

    Article  PubMed  Google Scholar 

  50. Hart M, Cross A, D’Agui H, Dixon K, Van der Heyde M, Moreira-Grez B, Whitely A (2020) Only sequence at your peril: examining assumptions of soil microbial ecology in the monitoring of ecological restoration. Ecological Solutions and Evidence

  51. Pedrinho A, Mendes LW, Merloti LF, Da Fonseca MDC, Cannavan FDS, Tsai SM (2019) Forest-to-pasture conversion and recovery based on assessment of microbial communities in Eastern Amazon rainforest. FEMS microbiology ecology. 95(3):fiy236

    Article  CAS  PubMed  Google Scholar 

  52. Liang JL, Liu J, Jia P, Yang TT, Zeng QW, Zhang SC, Li JT (2020) Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J 14(6):1600–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Musil N-M, Raitt CF, L, (2010) A review of phytoplankton dynamics in tropical African lakes. S Afr J Sci 106(1):13–18

    Google Scholar 

  54. Freitas R, Vieira HH, de Moraes GP, de Melo ML, Vieira AAH, Sarmento H (2018) Productivity and rainfall drive bacterial metabolism in tropical cascading reservoirs. Hydrobiologia 809(1):233–246

    Article  CAS  Google Scholar 

  55. Costa NB, Kolman MA, Giani A (2016) Cyanobacteria diversity in alkaline saline lakes in the Brazilian Pantanal wetland: a polyphasic approach. J Plankton Res 38(6):1389–1403

    CAS  Google Scholar 

  56. Bakker ES, Hilt S (2016) Impact of water-level fluctuations on cyanobacterial blooms: options for management. Aquat Ecol 50(3):485–498

    Article  CAS  Google Scholar 

  57. Brasil J, Attayde JL, Vasconcelos FR, Dantas DD, Huszar VL (2016) Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770(1):145–164

    Article  CAS  Google Scholar 

  58. Kebede E (1997) Response of Spirulina platensis (= Arthrospira fusiformis) from Lake Chitu, Ethiopia, to salinity stress from sodium salts. J Appl Phycol 9(6):551–558

    CAS  Google Scholar 

  59. Ballot A, Krienitz L, Kotut K, Wiegand C, Metcalf JS, Codd GA, Pflugmacher S (2004) Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya—Lakes Bogoria, Nakuru and Elmenteita. J Plankton Res 26(8):925–935

    Article  CAS  Google Scholar 

  60. Krienitz L, Dadheech PK, Kotut K (2013) Mass developments of the cyanobacteria Anabaenopsis and Cyanospira (Nostocales) in the soda lakes of Kenya: ecological and systematic implications. Hydrobiologia 703(1):79–93

    Article  CAS  Google Scholar 

  61. Kolmonen E, Sivonen K, Rapala J, Haukka KJAME (2004) Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas. Finland Aquatic microbial ecology 36(3):201–211

    Article  Google Scholar 

  62. Alvarenga DO, Andreote APD, Branco LHZ, Fiore MF (2017) Kryptousia macronema gen nov sp nov and Kryptousia microlepis sp nov nostocalean cyanobacteria isolated from phyllospheres. International journal of systematic and evolutionary microbiology 67(9):3301–3309

    Article  CAS  PubMed  Google Scholar 

  63. Nelson C, Garcia-Pichel F (2021) Beneficial cyanosphere heterotrophs accelerate establishment of cyanobacterial biocrust. Appl Environ Microbiol 87(20):e01236-e1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ji B, Qin H, Guo S, Chen W, Zhang X, Liang J (2018) Bacterial communities of four adjacent fresh lakes at different trophic status. Ecotoxicol Environ Saf 157:388–394

    Article  CAS  PubMed  Google Scholar 

  65. Zavarzina DG, Kolganova TV, Boulygina ES, Kostrikina NA, Tourova TP, Zavarzin GA (2006) Geoalkalibacter ferrihydriticusgen. nov. sp. nov., the first alkaliphilic representative of the family Geobacteraceae isolated from a soda lake. Microbiology 75:673–682

    Article  CAS  Google Scholar 

  66. Oremland RS, Saltikov CW, Stolz JF, Hollibaugh JT (2017) Autotrophic microbial arsenotrophy in arsenic-rich soda lakes. FEMS microbiology letters. 364:15

    Article  Google Scholar 

  67. Molot LA, Watson SB, Creed IF, Trick CG, McCabe SK, Verschoor MJ, Schiff SL (2014) A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron. Freshw Biol 59(6):1323–1340

    Article  CAS  Google Scholar 

  68. Qiu GW Koedooder C Qiu BS Shaked Y Keren N (2021) Iron transport in cyanobacteria–from molecules to communities. Trends in Microbiology

  69. Shishido TK, Popin RV, Jokela J, Wahlsten M, Fiore MF, Fewer DP, Sivonen K (2019) Dereplication of natural products with antimicrobial and anticancer activity from Brazilian cyanobacteria. Toxins 12(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sorokin DY, van Pelt S, Tourova TP, Evtushenko LI (2009) Nitriliruptor alkaliphilus gen. nov., sp. nov. a deep lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol 59:248–253

    Article  CAS  PubMed  Google Scholar 

  71. Kalwasińska A, Jankiewicz U, Felföldi T, Burkowska-But A, Swiontek-Brzezinska M (2018) Alkaline and halophilic protease production by Bacillus luteus H11 and its potential industrial applications. Food Technol Biotechnol 56:553–561Return to ref 2018 in article

  72. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2010) Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol Oceanogr 55(5):1901–1911

    Article  CAS  Google Scholar 

  73. Jeffries TC, Seymour JR, Newton K, Smith RJ, Seuront L, Mitchell JG (2012) Increases in the abundance of microbial genes encoding halotolerance and photosynthesis along a sediment salinity gradient. Biogeosciences 9(2):815–825

    Article  CAS  Google Scholar 

  74. Lay CY, Mykytczuk NC, Yergeau Ï, Lamarche-Gagnon G, Greer CW, Whyte LG (2013) Defining the functional potential and active community members of a sediment microbial community in a high-arctic hypersaline subzero spring. Appl Environ Microbiol 79(12):3637–3648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mangrola AV, Dudhagara P, Koringa P, Joshi CG, Patel RK (2015) Shotgun metagenomic sequencing based microbial diversity assessment of Lasundra hot spring, India. Genomics data 4:73–75

    Article  PubMed  PubMed Central  Google Scholar 

  76. Guerra A, de Oliveira PTS, de Oliveira Roque F, Rosa IM, Ochoa-Quintero JM, Guariento RD, Garcia LC (2020) The importance of Legal Reserves for protecting the Pantanal biome and preventing agricultural losses. J Environ Manage 260:110128

    Article  PubMed  Google Scholar 

  77. Harris MB, Tomas W, Mourão G, Da Silva CJ, Guimaraes E, Sonoda F, Fachim E (2005) Safeguarding the Pantanal wetlands: threats and conservation initiatives. Conserv Biol 19(3):714–720

    Article  Google Scholar 

Download references

Acknowledgements

We thank the owner of the São Roque farm for permission to collect the water samples. We want to thank Prof. J. A. Bendassolli for the ionic chromatography analyses. We also thank the Center of Functional Genomics Applied to Agriculture and Agroenergy (USP, Campus “Luiz de Queiroz”) for generating the Illumina HiSeq data.

Funding

This research was supported by the São Paulo Research Foundation (FAPESP #2016/14227–5). T. A. P. is thankful to the FAPESP (#2017/12644–0) for providing graduate scholarship. M. F. F. and H. S. received research fellowship (306803/2018–6 and 309514/2017–7, respectively) from the Brazilian National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

M. F. F. and T. A. P. conceived the study. T. A. P., J. S. C., H. S., and E. D. collected the samples. T. P., S. C., J. S. C., H. S., and E. D. analyzed the data. All authors were involved in writing the paper and had final approval of the manuscript.

Corresponding author

Correspondence to Marli F. Fiore.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6076 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellegrinetti, T.A., Cotta, S.R., Sarmento, H. et al. Bacterial Communities Along Environmental Gradients in Tropical Soda Lakes. Microb Ecol 85, 892–903 (2023). https://doi.org/10.1007/s00248-022-02086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02086-6

Keywords

Navigation