Skip to main content

Advertisement

Log in

Reef Location and Client Diversity Influence the Skin Microbiome of the Caribbean Cleaner Goby Elacatinus evelynae

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Fish-associated microorganisms are known to be affected by the environment and other external factors, such as microbial transfer between interacting partners. One of the most iconic mutualistic interactions on coral reefs is the cleaning interactions between cleaner fishes and their clients, during which direct physical contact occurs. Here, we characterized the skin bacteria of the Caribbean cleaner sharknose goby, Elacatinus evelynae, in four coral reefs of the US Virgin Islands using sequencing of the V4 region of the 16S rRNA gene. We specifically tested the relationship between gobies’ level of interaction with clients and skin microbiota diversity and composition. Our results showed differences in microbial alpha- and beta-diversity in the skin of gobies from different reef habitats and high inter-individual variation in microbiota diversity and structure. Overall, the results showed that fish-to-fish direct contact and specifically, access to a diverse clientele, influences the bacterial diversity and structure of cleaner gobies’ skin. Because of their frequent contact with clients, and therefore, high potential for microbial exchange, cleaner fish may serve as models in future studies aiming to understand the role of social microbial transfer in reef fish communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Raw sequence reads are available in the NCBI’s Short Read Archive under accession PRJNA756005.

Code availability

Not applicable.

References

  1. Langmead O, Sheppard C (2004) Coral reef community dynamics and disturbance: a simulation model. Ecol Model 175:271–290. https://doi.org/10.1016/j.ecolmodel.2003.10.019

    Article  Google Scholar 

  2. Vanwonterghem I, Webster NS (2020) Coral reef microorganisms in a changing climate. iScience 23:100972. https://doi.org/10.1016/j.isci.2020.100972

    Article  PubMed  PubMed Central  Google Scholar 

  3. Apprill A, Hughen K, Mincer T (2013) Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals. Environ Microbiol 15:2063–2072. https://doi.org/10.1111/1462-2920.12107

    Article  CAS  PubMed  Google Scholar 

  4. Barott KL, Rodriguez-Mueller B, Youle M, Marhaver KL, Vermeij MJ, Smith JE, Rohwer FL (2012) Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae. Proc Biol Sci 279:1655–1664. https://doi.org/10.1098/rspb.2011.2155

    Article  PubMed  Google Scholar 

  5. Chiarello M, Auguet JC, Bettarel Y, Bouvier C, Claverie T, Graham NAJ, Rieuvilleneuve F, Sucre E, Bouvier T, Villeger S (2018) Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome 6:147. https://doi.org/10.1186/s40168-018-0530-4

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xavier R, Pereira A, Pagan A, Hendrick GC, Nicholson MD, Rosado D, Soares MC, Pérez-Losada M, Sikkel PC (2020) The effects of environment and ontogeny on the skin microbiome of two Stegastes damselfishes (Pomacentridae) from the eastern Caribbean Sea. Mar Biol 167:1–12. https://doi.org/10.1007/s00227-020-03717-7

    Article  Google Scholar 

  7. Larsen A, Tao Z, Bullard SA, Arias CR (2013) Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol 85:483–494. https://doi.org/10.1111/1574-6941.12136

    Article  CAS  PubMed  Google Scholar 

  8. Chiarello M, Villeger S, Bouvier C, Auguet JC, Bouvier T (2017) Captive bottlenose dolphins and killer whales harbor a species-specific skin microbiota that varies among individuals. Sci Rep 7:15269. https://doi.org/10.1038/s41598-017-15220-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chiarello M, Villeger S, Bouvier C, Bettarel Y, Bouvier T (2015) High diversity of skin-associated bacterial communities of marine fishes is promoted by their high variability among body parts, individuals and species. FEMS Microbiol Ecol 91:fiv061. https://doi.org/10.1093/femsec/fiv061

    Article  CAS  PubMed  Google Scholar 

  10. Huang Q, Sham RC, Deng Y, Mao Y, Wang C, Zhang T, Leung KMY (2020) Diversity of gut microbiomes in marine fishes is shaped by host-related factors. Mol Ecol 29:5019–5034. https://doi.org/10.1111/mec.15699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sylvain FE, Holland A, Bouslama S, Audet-Gilbert E, Lavoie C, Val AL, Derome N (2020) Fish skin and gut microbiomes show contrasting signatures of host species and habitat. Appl Environ Microbiol 86:e00789-20. https://doi.org/10.1128/AEM.00789-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krotman Y, Yergaliyev TM, Alexander Shani R, Avrahami Y, Szitenberg A (2020) Dissecting the factors shaping fish skin microbiomes in a heterogeneous inland water system. Microbiome 8:9. https://doi.org/10.1186/s40168-020-0784-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosado D, Xavier R, Cable J, Severino R, Tarroso P, Pérez-Losada M (2021) Longitudinal sampling of external mucosae in farmed European seabass reveals the impact of water temperature on bacterial dynamics. ISME Commu 1(1):1–11. https://doi.org/10.1038/s43705-021-00019-x

    Article  Google Scholar 

  14. Burns AR, Miller E, Agarwal M, Rolig AS, Milligan-Myhre K, Seredick S, Guillemin K, Bohannan BJM (2017) Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc Natl Acad Sci USA 114:11181–11186. https://doi.org/10.1073/pnas.1702511114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xavier R, Mazzei R, Perez-Losada M, Rosado D, Santos JL, Verissimo A, Soares MC (2019) A Risky Business? Habitat and social behavior impact skin and gut microbiomes in Caribbean cleaning gobies. Front Microbiol 10:716. https://doi.org/10.3389/fmicb.2019.00716

    Article  PubMed  PubMed Central  Google Scholar 

  16. Soares MC, Cable J, Lima-Maximino MG, Maximino C, Xavier R (2019) Using fish models to investigate the links between microbiome and social behaviour: the next step for translational microbiome research? Fish Fish. https://doi.org/10.1111/faf.12366

    Article  Google Scholar 

  17. Archie EA, Tung J (2015) Social behavior and the microbiome. Curr Opin Behav Sci 6:28–34. https://doi.org/10.1016/j.cobeha.2015.07.008

    Article  Google Scholar 

  18. Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H (2016) Social behavior shapes the chimpanzee pan-microbiome. Sci Adv 2:e1500997. https://doi.org/10.1126/sciadv.1500997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koch H, Schmid-Hempel P (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA 108:19288–19292. https://doi.org/10.1073/pnas.1110474108

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schmid-Hempel P (2017) Parasites and their social hosts. Trends Parasitol 33:453–462. https://doi.org/10.1016/j.pt.2017.01.003

    Article  PubMed  Google Scholar 

  21. Côté IM, Soares MC (2011) Gobies as cleaners. The Biology of Gobies. Science Publishers, St. Helier, p 525

    Google Scholar 

  22. Vaughan DB, Grutter AS, Costello MJ, Hutson KS (2017) Cleaner fishes and shrimp diversity and a re-evaluation of cleaning symbioses. Fish Fish 18:698–716. https://doi.org/10.1111/faf.12198

    Article  Google Scholar 

  23. Soares MC, Cardoso SC, Côté IM (2007) Client preferences by Caribbean cleaning gobies: food, safety or something else? Behav Ecol Sociobiol 61:1015–1022. https://doi.org/10.1007/s00265-006-0334-6

    Article  Google Scholar 

  24. Cheney KL, Côté IM (2001) Are Caribbean cleaning symbioses mutualistic? Costs and benefits of visiting cleaning stations to longfin damselfish. Anim Behav 62:927–933. https://doi.org/10.1006/anbe.2001.1832

    Article  Google Scholar 

  25. Sikkel PC, Herzlieb SE, Kramer DL (2005) Compensatory cleaner-seeking behavior following spawning in female yellowtail damselfish. Mar Ecol Prog Ser 296:1–11. https://doi.org/10.3354/meps296001

    Article  Google Scholar 

  26. Sikkel PC, Fuller CA, Hunte W (2000) Habitat/sex differences in time at cleaning stations and ectoparasite loads in a Caribbean reef fish. Mar Ecol Prog Ser 193:191–199. https://doi.org/10.3354/meps193191

    Article  Google Scholar 

  27. Arnal C, Côté IM, Sasal P, Morand S (2000) Cleaner-client interactions on a Caribbean reef: influence of correlates of parasitism. Behav Ecol Sociobiol 47:353–358. https://doi.org/10.1007/s002650050676

    Article  Google Scholar 

  28. Whittey KE, Dunkley K, Young GC, Cable J, Perkins SE (2021) Microhabitats of sharknose goby (Elacatinus evelynae) cleaning stations and their links with cleaning behaviour. Coral Reefs. https://doi.org/10.1007/s00338-021-02105-x

    Article  Google Scholar 

  29. Cheney KL, Côté IM (2005) Mutualism or parasitism? The variable outcome of cleaning symbioses. Biol Lett 1:162–165. https://doi.org/10.1098/rsbl.2004.0288

    Article  PubMed  PubMed Central  Google Scholar 

  30. Artim JM, Nicholson MD, Hendrick GC, Brandt M, Smith TB, Sikkel PC (2020) Abundance of a cryptic generalist parasite reflects degradation of an ecosystem. Ecosphere 11:e03268. https://doi.org/10.1002/ecs2.3268

    Article  Google Scholar 

  31. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590-596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  35. Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414. https://doi.org/10.1111/1462-2920.13023

    Article  CAS  PubMed  Google Scholar 

  36. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172. https://doi.org/10.1038/ismej.2010.133

    Article  PubMed  Google Scholar 

  39. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan

  40. Waldie PA, Blomberg SP, Cheney KL, Goldizen AW, Grutter AS (2011) Long-term effects of the cleaner fish Labroides dimidiatus on coral reef fish communities. PLoS ONE 6:e21201. https://doi.org/10.1371/journal.pone.0021201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunkley K, Ellison AR, Mohammed RS, van Oosterhout C, Whittey KE, Perkins SE, Cable J (2019) Long-term cleaning patterns of the sharknose goby (Elacatinus evelynae). Coral Reefs 38:321–330. https://doi.org/10.1007/s00338-019-01778-9

    Article  Google Scholar 

  42. Pratte ZA, Patin NV, McWhirt ME, Caughman AM, Parris DJ, Stewart FJ (2018) Association with a sea anemone alters the skin microbiome of clownfish. Coral Reefs 37:1119–1125. https://doi.org/10.1007/s00338-018-01750-z

    Article  Google Scholar 

  43. Chiarello M, Auguet JC, Graham NAJ, Claverie T, Sucre E, Bouvier C, Rieuvilleneuve F, Restrepo-Ortiz CX, Bettarel Y, Villeger S, Bouvier T (2020) Exceptional but vulnerable microbial diversity in coral reef animal surface microbiomes. Proc Biol Sci 287:20200642. https://doi.org/10.1098/rspb.2020.0642

    Article  PubMed  PubMed Central  Google Scholar 

  44. Quimbayo JP, Zapata FA (2018) Cleaning interactions by gobies on a tropical eastern Pacific coral reef. J Fish Biol 92:1110–1125. https://doi.org/10.1111/jfb.13573

    Article  CAS  PubMed  Google Scholar 

  45. Grutter AS (1996) Parasite removal rates by the cleaner wrasse Labroides dimidiatus. Mar Ecol Prog Ser 130:61–70. https://doi.org/10.3354/meps130061

    Article  Google Scholar 

  46. Sikkel PC, Welicky RL (2019) The ecological significance of parasitic crustaceans. Parasitic Crustacea. pp 421–477

    Chapter  Google Scholar 

  47. Narvaez P, Vaughan DB, Grutter AS, Hutson KS (2021) New perspectives on the role of cleaning symbiosis in the possible transmission of fish diseases. Rev Fish Biol Fisheries 31:233–251. https://doi.org/10.1007/s11160-021-09642-2

    Article  Google Scholar 

  48. Esteban MÁ (2012) An overview of the immunological defenses in fish skin. ISRN Immunology 2012:1–29. https://doi.org/10.5402/2012/853470

    Article  Google Scholar 

  49. Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, Kilpatrick AM, Powers KE, Foster JT, McKenzie VJ (2016) Deconstructing the bat skin microbiome: influences of the host and the environment. Front Microbiol 7:1753. https://doi.org/10.3389/fmicb.2016.01753

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ellison S, Rovito S, Parra-Olea G, Vasquez-Almazan C, Flechas SV, Bi K, Vredenburg VT (2019) The influence of habitat and phylogeny on the skin microbiome of amphibians in Guatemala and Mexico. Microb Ecol 78:257–267. https://doi.org/10.1007/s00248-018-1288-8

    Article  PubMed  Google Scholar 

  51. Apprill A, Robbins J, Eren AM, Pack AA, Reveillaud J, Mattila D, Moore M, Niemeyer M, Moore KM, Mincer TJ (2014) Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals? PLoS ONE 9:e90785. https://doi.org/10.1371/journal.pone.0090785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chiarello M, Paz-Vinas I, Veyssiere C, Santoul F, Loot G, Ferriol J, Bouletreau S (2019) Environmental conditions and neutral processes shape the skin microbiome of European catfish (Silurus glanis) populations of Southwestern France. Environ Microbiol Rep 11:605–614. https://doi.org/10.1111/1758-2229.12774

    Article  PubMed  Google Scholar 

  53. Becker CC, Weber L, Suca JJ, Llopiz JK, Mooney TA, Apprill A (2020) Microbial and nutrient dynamics in mangrove, reef, and seagrass waters over tidal and diurnal time scales. Aquat Microb Ecol 85:101–119. https://doi.org/10.3354/ame01944

    Article  Google Scholar 

  54. Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Center for Marine and Environmental Studies (CMES) and the Virgin Islands Environmental Resource Station (VIERS) of the University of the Virgin Islands for logistical support. Thanks also to Matthew Nicholson, Gina Hendrick, and Andres Pagan for assisting with field logistics. This work is contribution number 238 from the University of the Virgin Islands Center for Marine and Environmental Studies.

Funding

Funding was provided by the National Science Foundation awards OCE-2023420 to PCS and OCE-2022955 to AA, and by the European Regional Development Fund (ERDF) through the COMPETE program and by the National Funds through Foundation for Science and Technology (project PTDC/BIA-MIC/27995/2017 POCI-01–0145- FEDER-027995) to RX. RX was also supported by Foundation for Science and Technology (FCT) under the Programa Operacional Potencial Humano-Quadro de Referência Estratégico Nacional funds from the European Social Fund and Portuguese Ministério da Educação e Ciência (IF/00359/2015; and 2020.00854.CEECIND/CP1601/CT0001). M.C.S. was supported by Portuguese National Funds through Foundation for Science and Technology (FCT) (DL57/2016/CP1440/CT0019). Field data were collected with support from NSF OCE-1536794 to PCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Pereira.

Ethics declarations

Ethics approval

Fish were collected under permit number DFW18072U from the US Virgin Islands Division of Fish and Wildlife and permit number VIIS-2018-SCI-0008 for sites within the Virgin Islands National Park, and under IACUC ethics protocol number 778227–1, PC Sikkel, PI.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5274 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, A., Soares, M., Santos, T. et al. Reef Location and Client Diversity Influence the Skin Microbiome of the Caribbean Cleaner Goby Elacatinus evelynae. Microb Ecol 85, 372–382 (2023). https://doi.org/10.1007/s00248-022-01984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-01984-z

Keywords

Navigation