Skip to main content
Log in

Degradation of Uranium-Contaminated Decontamination Film by UV Irradiation and Microbial Biodegradation

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

A Correction to this article was published on 24 January 2022

This article has been updated

Abstract

This research provides a complete degradation scheme for acrylic copolymer/cellulose acetate butyrate peelable decontamination films. This study analyzed the removal efficiency of uranium by peelable decontamination film. More importantly, the degradability of the films was evaluated by a combined treatment with UV radiation and microbial biodegradation. The results showed that UV radiation would rupture the surface of the decontamination films, which leaded the weight-average molecular weight decreased by 55.3% and number-average molecular weight decreased by 75.83%. Additionally, the microbial flora induced light-degradable decontamination film weight-average molecular weight and number-average molecular weight decreased by 9.3% and 30.73%, respectively. 16S rRNA microbial diversity analysis indicated that Pantoea, Xylella, Cronobacter, and Olivibacter were the major degrading bacteria genera. Among them, 4 key strains that can be stripped of decontamination films have been isolated and identified from the dominant degrading bacteria group. The results show that UV radiation combined with microbial flora can achieve rapid degradation of the decontamination films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable for that section.

Code Availability

Not applicable for that section.

Change history

References

  1. Skipperud L, Strømman G, Yunusov M et al (2013) Environmental impact assessment of radionuclide and metal contamination at the former U sites Taboshar and Digmai, Tajikistan. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2012.05.007

    Article  PubMed  Google Scholar 

  2. Tazoe H, Hosoda M, Sorimachi A et al (2012) Radioactive pollution from Fukushima Daiichi nuclear power plant in the terrestrial environment. Radiat Prot Dosimetry. https://doi.org/10.1093/rpd/ncs222

    Article  PubMed  Google Scholar 

  3. Jolin WC, Magnuson ML, Kaminski MD (2019) High pressure decontamination of building materials during radiological incident recovery. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2018.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Koryakovskiy YS, Doilnitsyn VA, Akatov AA (2019) Improving the efficiency of fixed radionuclides’ removal by chemical decontamination of surfaces in situ. Nucl Energy Technol. https://doi.org/10.3897/nucet.5.36477

    Article  Google Scholar 

  5. Kumar A, Prakash T, Prasad M et al (2017) Laser assisted removal of fixed radioactive contamination from metallic substrate. Nucl Eng Des. https://doi.org/10.1016/j.nucengdes.2017.06.003

    Article  Google Scholar 

  6. Zhang H, Xi H, Li Z et al (2021) The stability and decontamination of surface radioactive contamination of biomass-based antifreeze foam. Colloids Surfaces A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2021.126774

    Article  Google Scholar 

  7. Zhang K, Wang S, He Z et al (2020) Study on acrylate peelable nuclear detergent for film formation at low temperature. Appl Radiat Isot. https://doi.org/10.1016/j.apradiso.2020.109187

    Article  PubMed  Google Scholar 

  8. He Z, Li Y, Xiao Z et al (2020) Synthesis and preparation of (acrylic copolymer) ternary system peelable sealing decontamination material. Polymers (Basel). https://doi.org/10.3390/polym12071556

    Article  PubMed Central  Google Scholar 

  9. Li YX(2016)Exploration of peelable membrane technology in radioactive pollution protection of Hongyanhe Nuclear Power Station. Radiation protection newsletter. https://doi.org/10.3969/j.issn.1004-6356.2016.03.009

  10. Liu RL, Li YT, Zhou YL et al (2016) Fabrication of poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymer as a self-embrittling strippable coating for radioactive decontamination. Chem Lett. https://doi.org/10.1246/cl.160195

    Article  Google Scholar 

  11. Wang Z, Yang Y, Wang H, et al (2010) Development of strippable PVA film for cleaning radioactive dusts on device surface. Nuclear Techniques. https://doi.org/10.1016/S1876-3804(11)60004-9

  12. Lens P, Hamelers B, Hoitink H, Bidlingmaier W (2015) Resource recovery and reuse in organic solid waste management. Water Intell Online. https://doi.org/10.2166/9781780402765

    Article  Google Scholar 

  13. Natarajan V, Karunanidhi M, Raja B (2020) A critical review on radioactive waste management through biological techniques. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08404-0

    Article  Google Scholar 

  14. Shi K, Jing J, Song L et al (2020) Enzymatic hydrolysis of polyester: Degradation of poly(ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.12.105

    Article  PubMed  Google Scholar 

  15. Mao H, Liu H, Gao Z et al (2015) Biodegradation of poly(butylene succinate) by Fusarium sp. FS1301 and purification and characterization of poly(butylene succinate) depolymerase. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2015.01.025

    Article  Google Scholar 

  16. Montazer Z, Habibi Najafi MB, Levin DB (2019) Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can J Microbiol. https://doi.org/10.1139/cjm-2018-0335

    Article  PubMed  Google Scholar 

  17. Arkatkar A, Juwarkar AA, Bhaduri S et al (2010) Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegrad. https://doi.org/10.1016/j.ibiod.2010.06.002

    Article  Google Scholar 

  18. Huifen Z (1985) Exploration of new solvent-based peelable plastics. Aerosp Manuf Technol. CNKI:SUN:HTGY.0.1985–06–007

  19. Zan L, Fa W, Wang S (2006) Novel photodegradable low-density polyethylene-TiO2 nanocomposite film. Environ Sci Technol. https://doi.org/10.1021/es051173x

    Article  PubMed  Google Scholar 

  20. Hammond JM, Hooper JF, Stutchbury JE (2007) Gel permeation chromatography of polymers. J Polym Sci Polym Symp. https://doi.org/10.1002/polc.5070490112

  21. Dussud C, Hudec C, George M et al (2018) Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01571

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang WH, Huang CW, Tsou EY et al (2021) Characterization of degradation behavior of poly(glycerol maleate) films in various aqueous environments. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2020.109441

    Article  Google Scholar 

  23. Yang C, Gong C, Peng T et al (2010) High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2010.01.056

    Article  PubMed  Google Scholar 

  24. Mohan AJ, Sekhar VC, Bhaskar T, Nampoothiri KM (2016) Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresour Technol. https://doi.org/10.1016/j.biortech.2016.03.021

    Article  PubMed  Google Scholar 

  25. Zhang H, Xu L, Huang T et al (2021) Combined effects of seasonality and stagnation on tap water quality: changes in chemical parameters, metabolic activity and co-existence in bacterial community. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.124018

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nossa CW, Oberdorf WE, Yang L et al (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol. https://doi.org/10.3748/wjg.v16.i33.4135

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bollmann A, Bullerjahn GS, McKay RM (2014) Abundance and diversity of ammonia-oxidizing archaea and bacteria in sediments of trophic end members of the laurentian Great Lakes, Erie and Superior. PLoS One. https://doi.org/10.1371/journal.pone.0097068

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim MY, Kim C, Moon J et al (2017) Polymer film-based screening and isolation of polylactic acid (PLA)-degrading microorganisms. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1610.10015

    Article  PubMed  Google Scholar 

  29. Liu Jiaqian, Hou Lijun LT (2021) Screening and characterization of PBAT degrading bacteria. J Agro-Environ Sci. https://doi.org/10.11654/jaes.2020-0888

  30. Hou Q, Bai X, Li W et al (2018) Design of primers for evaluation of lactic acid bacteria populations in complex biological samples. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02045

    Article  PubMed  PubMed Central  Google Scholar 

  31. Agarwal M, Rathore RS, Chauhan A (2020) A rapid and high throughput mic determination method to screen uranium resistant microorganisms. Methods Protoc. https://doi.org/10.3390/mps3010021

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gardette JL, Sinturel C, Lemaire J (1999) Photooxidation of fire retarded polypropylene. Polym Degrad Stab. https://doi.org/10.1016/S0141-3910(98)00157-8

    Article  Google Scholar 

  33. Zhang Y, Sun T, Zhang D et al (2020) Enhanced photodegradability of PVC plastics film by codoping nano-graphite and TiO2. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2020.109332

    Article  Google Scholar 

  34. Zahra S, Abbas SS, Mahsa MT, Mohsen N (2010) Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Manag. https://doi.org/10.1016/j.wasman.2009.09.027

    Article  PubMed  Google Scholar 

  35. Gambarini V, Pantos O, Kingsbury JM et al (2021) Phylogenetic distribution of plastic-degrading microorganisms. mSystems. https://doi.org/10.1128/msystems.01112-20

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kanokratana P, Mhuantong W, Laothanachareon T et al (2013) Phylogenetic analysis and metabolic potential of microbial communities in an industrial bagasse collection site. Microb Ecol. https://doi.org/10.1007/s00248-013-0209-0

    Article  PubMed  Google Scholar 

  37. Kyaw BM, Champakalakshmi R, Sakharkar MK et al (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol. https://doi.org/10.1007/s12088-012-0250-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. Park SY, Kim CG (2019) Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.01.159

  39. Vimala PP, Mathew L (2016) Biodegradation of polyethylene using Bacillus Subtilis. Procedia Technol. https://doi.org/10.1016/j.protcy.2016.05.031

    Article  Google Scholar 

  40. Ren L, Men L, Zhang Z et al (2019) Biodegradation of polyethylene by enterobacter sp. D1 from the guts ofwax moth galleria mellonella. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16111941

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xiong XQ, Liao HD, Ma JS et al (2014) Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Lett Appl Microbiol. https://doi.org/10.1111/lam.12163

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The preparation and characterization of the decontamination film were guided and assisted by Professor Lin Xiaoyan and Dr. Pan Xunhai of the Engineering Research Center of the Ministry of Education of Biomass Materials, and then expressed sincere thanks. We wish to thank the Shanghai Luming biology Co., Ltd. for their assistance in the analysis of metabolome data. The Engineering Research Center for Material and Materials of the Ministry of Education of Southwest University of Science and Technology is kindly acknowledged for the experimental sites and equipment.

Funding

Open access funding was supported by the National Key Laboratory of National Nuclear and Biochemical Disaster Protection Open Fund Project (No. SKLNBC2019-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Ethics declarations

Ethics Approval

Not applicable for that section.

Consent to Participate

Not applicable for that section.

Consent for Publication

If accepted, consent is given for publication.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Lai, Jl., Zhang, Y. et al. Degradation of Uranium-Contaminated Decontamination Film by UV Irradiation and Microbial Biodegradation. Microb Ecol 84, 439–450 (2022). https://doi.org/10.1007/s00248-021-01862-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01862-0

Keywords

Navigation