Skip to main content
Log in

Seasonal Succession and Coherence Among Bacteria and Microeukaryotes in Lake Baikal

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microorganisms exhibit seasonal succession governed by physicochemical factors and interspecies interactions, yet drivers of this process in different environments remain to be determined. We used high-throughput sequencing of 16S rRNA and 18S rRNA genes to study seasonal dynamics of bacterial and microeukaryotic communities at pelagic site of Lake Baikal from spring (under-ice, mixing) to autumn (direct stratification). The microbial community was subdivided into distinctive coherent clusters of operational taxonomic units (OTUs). Individual OTUs were consistently replaced during different seasonal events. The coherent clusters change their contribution to the microbial community depending on season. Changes of temperature, concentrations of silicon, and nitrates are the key factors affected the structure of microbial communities. Functional prediction revealed that some bacterial or eukaryotic taxa that switched with seasons had similar functional properties, which demonstrate their functional redundancy. We have also detected specific functional properties in different coherent clusters of bacteria or microeukaryotes, which can indicate their ability to adapt to seasonal changes of environment. Our results revealed a relationship between seasonal succession, coherency, and functional features of freshwater bacteria and microeukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gilbert JA, Steele JA, Caporaso J, Steinbrück L, Reeder J, Temperton B, Huse S, McHardy AC, Knight R, Joint I, Somefield P, Fuhrman JA, Field D (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308. https://doi.org/10.1038/ismej.2011.107

    Article  CAS  PubMed  Google Scholar 

  2. Chow C-ET, Kim DY, Sachdeva R, Caron DA, Fuhrman JA (2014) Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J 8:816–829. https://doi.org/10.1038/ismej.2013.199

    Article  CAS  PubMed  Google Scholar 

  3. Bunse C, Pinhassi J (2017) Marine bacterioplankton seasonal succession dynamics. Trends Microbiol 25:494–505. https://doi.org/10.1016/j.tim.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  4. Schweitzer-Natan O, Ofek-Lalzar M, Sher D, Sukenik A (2019) Particle-associated microbial community in a subtropical lake during thermal mixing and phytoplankton succession. Front Microbiol 10:2142. https://doi.org/10.3389/fmicb.2019.02142

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ward CS, Yung C-M, Davis KM, Blinebry SK, Williams TC, Johnson ZI, Hunt DE (2017) Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J 11:1412–1422. https://doi.org/10.1038/ismej.2017.4

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bunse C, Israelsson S, Baltar F, Bertos-Fortis M, Fridolfsson E, Legrand C, Lindehoff E, Lindh MV, Martínez-García S, Pinhassi J (2019) High frequency multi-year variability in baltic sea microbial plankton stocks and activities. Front Microbiol 9:3296. https://doi.org/10.3389/fmicb.2018.03296

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhou J, Richlen ML, Sehein TR, Kulis DM, Anderson DM, Cai Z (2018) Microbial community structure and associations during a marine dinoflagellate bloom. Front Microbiol 9:1201. https://doi.org/10.3389/fmicb.2018.01201

    Article  PubMed  PubMed Central  Google Scholar 

  8. Posch T, Eugster B, Pomati F, Pernthaler J, Pitsch G, Eckert EM (2015) Network of interactions between ciliates and phytoplankton during spring. Front Microbiol 6:1289. https://doi.org/10.3389/fmicb.2015.01289

    Article  PubMed  PubMed Central  Google Scholar 

  9. Teeling H, Fuchs BM, Bennke CM, Krueger K, Chafee M, Kappelmann L, Reintjes G, Waldmann J, Quast C, Glöckner FO, Lucas J, Wichels A, Gerdts G, Wiltshire KH, Amann RI (2016) Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. elife 5:e11888. https://doi.org/10.7554/eLife.11888.001

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jones AC, Hambright KD, Caron DA (2018) Ecological patterns among bacteria and microbial eukaryotes derived from network analyses in a low-salinity lake. Microb Ecol 75:917–929. https://doi.org/10.1007/s00248-017-1087-7

    Article  PubMed  Google Scholar 

  11. Zhou J, Lao YM, Song JT, Jin H, Zhu JM, Cai ZH (2020) Temporal heterogeneity of microbial communities and metabolic activities during a natural algal bloom. Water Res 183:116020. https://doi.org/10.1016/j.watres.2020.116020

    Article  CAS  PubMed  Google Scholar 

  12. Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, Chow CET, Sachdeva R, Jones AC, Schwalbach MS, Rose JM, Hewson I, Patel A, Sun F, Caron DA, Fuhrman JA (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425. https://doi.org/10.1038/ismej.2011.24

    Article  PubMed  PubMed Central  Google Scholar 

  13. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550. https://doi.org/10.1038/nrmicro2832

    Article  CAS  PubMed  Google Scholar 

  14. Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6:330–342. https://doi.org/10.1038/ismej.2011.113

    Article  CAS  PubMed  Google Scholar 

  15. Andersson A, Riemann L, Bertilsson S (2010) Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J 4:171–181. https://doi.org/10.1038/ismej.2009.108

    Article  PubMed  Google Scholar 

  16. Bock C, Salcher M, Jensen M, Pandey RV, Boenigk J (2018) Synchrony of Eukaryotic and Prokaryotic Planktonic Communities in Three Seasonally Sampled Austrian Lakes. Front Microbiol 9:1290. https://doi.org/10.3389/fmicb.2018.01290

    Article  PubMed  PubMed Central  Google Scholar 

  17. Obertegger U, Pindo M, Flaim G (2019) Multifaceted aspects of synchrony between freshwater prokaryotes and protists. Mol Ecol 28:4500–4512. https://doi.org/10.1111/mec.15228

    Article  PubMed  Google Scholar 

  18. Shimaraev MN, Verbolov VI, Granin NG, Sherstayankin PP (1994) Physical limnology of Lake Baikal: a review. Baikal Intl. Cent. Ecol. Res, Irkutsk

  19. Pomazkina GV, Belykh OI, Domysheva VM, Sakirko MV, Gnatovsky RY (2010) Structure and dynamics of phytoplankton of Southern Baikal (Russia). Inter J Algae 12(1):64–79. https://doi.org/10.1615/InterJAlgae.v12.i1.50

    Article  CAS  Google Scholar 

  20. Popovskaya GI, Genkal SI, Likhoshway YV (2016) Diatoms of the plankton of Lake Baikal. Atlas and key. Second Edition, Revised and Expanded. Nauka, Novosibirsk

  21. Belykh OI, Ekaterina G, Sorokovikova T, Saphonova A, Tikhonova IV (2006) Autotrophic picoplankton of Lake Baikal: composition, abundance and structure. Hydrobiologia 568:9–17. https://doi.org/10.1007/s10750-006-0340-8

    Article  Google Scholar 

  22. Obolkina LA (2006) Planktonic ciliates of Lake Baikal. Hydrobiologia 568:193–199. https://doi.org/10.1007/s10750-006-0315-9

    Article  Google Scholar 

  23. Obolkina LA, Potapskaya NV, Belykh OI, Pomazkina GI, Blinov VV, Zhdanov AA (2012) Seasonal dynamics of ciliates and microalgae in the pelagic zone of Southern Baikal. Hydrobiol J 48:11–19

    Google Scholar 

  24. Yi Z, Berney C, Hartikainen H, Mahamdallie S, Gardner M, Boenigk J, Cavalier-Smith T, Bass D (2017) High throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol Ecol 93. https://doi.org/10.1093/femsec/fix073

  25. Mikhailov IS, Zakharova YR, Bukin YS, Galachyants YP, Petrova DP, Sakirko MV, Likhoshway YV (2019) Co-occurrence networks among bacteria and microbial eukaryotes of Lake Baikal during a spring phytoplankton bloom. Microb Ecol 77:96–109. https://doi.org/10.1007/s00248-018-1212-2

    Article  PubMed  Google Scholar 

  26. Annenkova NV, Giner CR, Logares R (2020) Tracing the origin of planktonic protists in an ancient lake. Microorganisms 8:543. https://doi.org/10.3390/microorganisms8040543

    Article  CAS  PubMed Central  Google Scholar 

  27. David GM, Moreira D, Reboul G, Annenkova NV, Galindo LJ, Bertolino P, López-Archilla AI, Jardillier L, López-García P (2020) Environmental drivers of plankton protist communities along latitudinal and vertical gradients in the oldest and deepest freshwater lake. Environ Microbiol. https://doi.org/10.1111/1462-2920.15346

    Article  PubMed  Google Scholar 

  28. Bashenkhaeva MV, Zakharova YR, Petrova DP, Khanaev IV, Galachyants YP, Likhoshway YV (2015) Sub-ice microalgal and bacterial communities in freshwater Lake Baikal, Russia. Microb Ecol 70:751–765. https://doi.org/10.1007/s00248-015-0619-2

    Article  PubMed  Google Scholar 

  29. Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, Rodriguez-Valera F (2018) Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl Environ Microbiol 84:e02132-e2217. https://doi.org/10.1128/AEM.02132-17

    Article  PubMed  Google Scholar 

  30. Kurilkina MI, Zakharova YR, Galachyants YP, Petrova DP, Bukin YS, DomyshevaVM BVV, Likhoshway EV (2016) Bacterial community composition in the water column of the deepest freshwater Lake Baikal as determined by next-generation sequencing. FEMS Microbiol Ecol 92. https://doi.org/10.1093/femsec/fiw094

  31. Wilburn P, Shchapov K, Theriot EC, Litchman E (2020) Environmental drivers define contrasting microbial habitats, diversity, and community structure in Lake Baikal, Siberia. bioRxiv. https://doi.org/10.1101/605899

    Article  Google Scholar 

  32. Blinov VV, Gnatovskii RY, Zhdanov AA, Granin NG (2019) Estimation of mineralization increase in the under-ice water layer of Southern Baikal. Russ Meteorol Hydrol 44:674–678. https://doi.org/10.3103/S1068373919100054

    Article  Google Scholar 

  33. Wetzel RG, Likens GE (2000) Limnological analyses. Springer-Verlag, New York

    Book  Google Scholar 

  34. ISO 6878:2004 Water quality — Determination of phosphorus — Ammonium molybdate spectrometric method

  35. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S et al (2007) The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5:e77. https://doi.org/10.1371/journal.pbio.0050077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555. https://doi.org/10.1016/j.mimet.2003.08.009

    Article  CAS  PubMed  Google Scholar 

  37. Bradley IM, Pinto AJ, Guest JS (2016) Design and evaluation of Illumina MiSeq-compatible, 18S rRNA gene-specific primers for improved characterization of mixed phototrophic communities. Appl Environ Microbiol 82:5878–5891. https://doi.org/10.1128/AEM.01630-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  39. Edgar RC (2016) SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. BioRxiv 074161. https://doi.org/10.1101/074161

  40. Rohwer RR, Hamilton JJ, Newton RJ, McMahon KD (2018) TaxAss: leveraging a custom freshwater database achieves fine-scale taxonomic resolution. mSphere 3:e00327-18. https://doi.org/10.1128/mSphere.00327-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing. R version 3.6.0

  44. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22: 1–20. https://doi.org/10.18637/jss.v022.i04

  45. Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B (Stat Methodol) 63(2):411–423

    Article  Google Scholar 

  46. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Granin NG, Jewson DH, Gnatovsky RY, Levin LA, Zhdanov AA, Gorbunova LA, Tsekhanovsky VV, Doroschenko LM, Mogilev NY (2000) Turbulent mixing under ice and the growth of diatoms in Lake Baikal. Verh Internat Verein Limnol 27:2812–2814. https://doi.org/10.1080/03680770.1998.11898179

    Article  Google Scholar 

  48. Bertilsson S, Burgin A, Carey CC, Fey SB, Grossart HP, Grubisic LM, Jones ID, Kirillin G, Lennon JT, Shade A, Smyth RL (2013) The under-ice microbiome of seasonally frozen lakes. Limnol Oceanogr 58:1998–2012. https://doi.org/10.4319/lo.2013.58.6.1998

    Article  Google Scholar 

  49. Weiss RF, Carmack EC, Koropalov VM (1991) Deep-water renewal and biological production in Lake Baikal. Nature 349:665–669. https://doi.org/10.1038/349665a0

    Article  CAS  Google Scholar 

  50. Izmest’eva LR, Moore MV, Hampton SE, Silow EA (2006) Seasonal dynamics of common phytoplankton in Lake Baikal. Proc Russ Acad Sci Sci Centre 8:191–196

    Google Scholar 

  51. Zhang Y, Lin X, Shi X, Lin L, Luo H, Li L, Lin S (2019) Metatranscriptomic signatures associated with phytoplankton regime shift from diatom dominance to a dinoflagellate bloom. Front Microbiol 10:590. https://doi.org/10.3389/fmicb.2019.00590

    Article  PubMed  PubMed Central  Google Scholar 

  52. Firsova AD, Kuzmina AE, Tomberg IV, Potemkina TG, Likhoshway YV (2008) Seasonal dynamics of chrysophyte stomatocyst formation in the plankton of Southern Baikal. Biol Bull Russ Acad Sci 35:507–514. https://doi.org/10.1134/S1062359008050129

    Article  Google Scholar 

  53. Bessudova A, Domysheva VM, Firsova AD, Likhoshway YV (2017) Silica-scaled chrysophytes of Lake Baikal. Acta Biologica Sibirica 3:47–56

    Article  Google Scholar 

  54. Boenigk J, Arndt H (2002) Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Avan Leeuw J Microb 81:465–480. https://doi.org/10.1023/A:1020509305868

    Article  Google Scholar 

  55. Grujcic V, Nuy JK, Salcher MM, Shabarova T, Kasalicky V, Boenigk J, Jensen M, Simek K (2018) Cryptophyta as major bacterivores in freshwater summer plankton. ISME J 12:1668–1681. https://doi.org/10.1038/s41396-018-0057-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tirok K, Gaedke U (2007) Regulation of planktonic ciliate dynamics and functional composition during spring in Lake Constance. Aquat Microb Ecol 49:87–100. https://doi.org/10.3354/ame01127

    Article  Google Scholar 

  57. Pitsch G, Bruni EP, Forster D, Qu Z, Sonntag B, Stoeck T, Posch T (2019) Seasonality of planktonic freshwater ciliates: Are analyses based on V9 regions of the 18S rRNA gene correlated with morphospecies counts? Front Microbiol 10:248. https://doi.org/10.3389/fmicb.2019.00248

    Article  PubMed  PubMed Central  Google Scholar 

  58. Karpov S, Mamkaeva MA, Aleoshin V, Nassonova E, Lilje O, Gleason FH (2014) Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol 5:112. https://doi.org/10.3389/fmicb.2014.00112

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gleason FH, Carney LT, Lilje O, Glockling SL (2012) Ecological potentials of species of Rozella (Cryptomycota). Fungal Ecol 5:651–656. https://doi.org/10.1016/j.funeco.2012.05.003

    Article  Google Scholar 

  60. Rasconi S, Niquil N, Sime-Ngando T (2012) Phytoplankton chytridiomycosis: community structure and infectivity of fungal parasites in aquatic systems. Environ Microbiol 14:2151–2170. https://doi.org/10.1111/j.1462-2920.2011.02690.x

    Article  PubMed  Google Scholar 

  61. Kagami M, de Bruin A, Ibelings BW, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129. https://doi.org/10.1007/s10750-006-0438-z

    Article  Google Scholar 

  62. Grossart HP, Van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M, Rojas-Jimenez K (2019) Fungi in aquatic ecosystems. Nat Rev Microbiol 17:339–354. https://doi.org/10.1038/s41579-019-0175-8

    Article  CAS  PubMed  Google Scholar 

  63. Bondarenko NA, Ozersky T, Obolkina LA, Tikhonova IV, Sorokovikova EG, Sakirko MV, Potapov SA, Blinov VV, Zhdanov AA, Belykh OI (2019) Recent changes in the spring microplankton of Lake Baikal, Russia. Limnologica 75:19–29. https://doi.org/10.1016/j.limno.2019.01.002

    Article  CAS  Google Scholar 

  64. Crump BC, Kling GW, Bahr M, Hobbie JE (2003) Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69:2253–2268. https://doi.org/10.1128/AEM.69.4.2253-2268.2003

    Article  PubMed  PubMed Central  Google Scholar 

  65. Allgaier M, Grossart HP (2006) Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl Environ Microbiol 72:3489–3497. https://doi.org/10.1128/AEM.72.5.3489-3497.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martinez-Garcia M, Swan BK, Poulton NJ, Gomez ML, Masland D, Sieracki ME, Stepanauskas R (2012) High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J 6:113–123. https://doi.org/10.1038/ismej.2011.84

    Article  CAS  PubMed  Google Scholar 

  67. Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F (2014) Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing. Mol Ecol 23:6073–6090. https://doi.org/10.1111/mec.12985

    Article  CAS  PubMed  Google Scholar 

  68. Jezbera J, Horňak K, Šimek K (2006) Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol 8:1330–1339. https://doi.org/10.1111/j.1462-2920.2006.01026.x

    Article  PubMed  Google Scholar 

  69. Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang S, Mann AJ, Waldmann J, Weber M, Klindworth A, Otto A, Lange J, Bernhardt J, Reinsch C, Hecker M, Peplies J, Bockelmann FD, Callies U, Gerdts G, Wichels A, Wiltshire KH, Glockner FO, Schweder T, Amann R (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–611. https://doi.org/10.1126/science.1218344

    Article  CAS  PubMed  Google Scholar 

  70. Buchan A, LeCleir GR, Gulvik CA, González JM (2014) Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 12:686–698. https://doi.org/10.1038/nrmicro3326

    Article  CAS  PubMed  Google Scholar 

  71. Borowitzka MA (2018) Biology of microalgae. In Microalgae in health and disease prevention. Academic Press, pp. 23–72. https://doi.org/10.1016/B978-0-12-811405-6.00003-7

  72. Rocha MR, Vasseur DA, Gaedke U (2012) Seasonal variations alter the impact of functional traits on plankton dynamics. PLoS ONE 7:e51257. https://doi.org/10.1371/journal.pone.0051257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Louca S, Polz MF, Mazel F, Albright MB, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, Doebeli M, Parfrey LW (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2:936–943. https://doi.org/10.1038/s41559-018-0519-1

    Article  PubMed  Google Scholar 

  74. Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105(Supplement 1):11512–11519. https://doi.org/10.1073/pnas.0801925105

    Article  PubMed  PubMed Central  Google Scholar 

  75. Del Giorgio PA, Gasol JM (1995) Biomass distribution in freshwater plankton communities. Am Nat 146:135–152. https://doi.org/10.1086/285790

    Article  Google Scholar 

  76. Sekino T, Genkai-Kato M, Kawabata ZI, Melnik NG, Logacheva NP, Belykh OI, Obolkina LA, Bondarenko NA, Khodzher TV, Gorbunova LA, Tanichev AI, Yoshida T, Kagami M, Gurung TB, Urabe J, Higashi M, Nakanishi M (2007) Role of phytoplankton size distribution in lake ecosystems revealed by a comparison of whole plankton community structure between Lake Baikal and Lake Biwa. Limnology 8:227–232. https://doi.org/10.1007/s10201-007-0218-0

    Article  CAS  Google Scholar 

  77. Lv X, Ma B, Yu J, Chang SX, Xu J, Li Y, Wang G, Han G, Bo G, Chu X (2016) Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta. Sci Rep 6:1–10

    Article  Google Scholar 

  78. Salcher MM, Posch T, Pernthaler J (2013) In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J 7:896–907. https://doi.org/10.1038/ismej.2012.162

    Article  CAS  PubMed  Google Scholar 

  79. Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, Barraclough TG (2012) Species interactions alter evolutionary responses to a novel environment. PloS Biol 10:e1001330. https://doi.org/10.1371/journal.pbio.1001330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Salcher MM, Pernthaler J, Posch T (2011) Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’(LD12). ISME J 5:1242–1252. https://doi.org/10.1038/ismej.2011.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Litchman E, Edwards KF, Klausmeier CA (2015) Microbial resource utilization traits and trade-offs: implications for community structure, functioning, and biogeochemical impacts at present and in the future. Front Microbiol 6:254. https://doi.org/10.3389/fmicb.2015.00254

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was performed using microscopes of the Instrumental Center “Electron Microscopy” of the Shared Research Facilities for Research “Ultramicroanalysis” LIN SB RAS and using HPC-cluster “Akademik V.M. Matrosov” of the Irkutsk Supercomputer Center of SB RAS. We thank crews of the research vessels “G.Yu. Vereshchagin” and “Akademik V.A. Koptyug” for their skillful assistance with sample collection. We also thank to Ivan Sidorov, system administrator of HPC-cluster, for help in performing computations.

Funding

This work was supported by the Ministry of Science and Higher Education of Russian Federation projects: no. 0279–2021-0008 (fieldwork, phytoplankton analyses); no. 0279–2021-0009 (DNA extraction and metagenomic analyzes), no. 0279–2021-0004 (temperature analyzes), and by the Integration project of the Irkutsk Scientific Center state registration no. AAAA-A17-117041250054–8 “Basic research and innovative technologies as a basis for advanced development of Baikal region and its interregional relationships” (project 4.2 “Application of the NGS-BD methods for solution of ecological problems” (hydrochemical analyzes, sequencing and statistical analyzes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan S. Mikhailov.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, I.S., Galachyants, Y.P., Bukin, Y.S. et al. Seasonal Succession and Coherence Among Bacteria and Microeukaryotes in Lake Baikal. Microb Ecol 84, 404–422 (2022). https://doi.org/10.1007/s00248-021-01860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01860-2

Keywords

Navigation