Skip to main content
Log in

Fermentation Ability of Gut Microbiota of Wild Japanese Macaques in the Highland and Lowland Yakushima: In Vitro Fermentation Assay and Genetic Analyses

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Wild Japanese macaques (Macaca fuscata Blyth) living in the highland and lowland areas of Yakushima are known to have different diets, with highland individuals consuming more leaves. We aim to clarify whether and how these differences in diet are also reflected by gut microbial composition and fermentation ability. Therefore, we conduct an in vitro fermentation assay using fresh feces from macaques as inoculum and dry leaf powder of Eurya japonica Thunb. as a substrate. Fermentation activity was higher for feces collected in the highland, as evidenced by higher gas and butyric acid production and lower pH. Genetic analysis indicated separation of highland and lowland in terms of both community structure and function of the gut microbiota. Comparison of feces and suspension after fermentation indicated that the community structure changed during fermentation, and the change was larger for lowland samples. Analysis of the 16S rRNA V3-V4 barcoding region of the gut microbiota showed that community structure was clearly clustered between the two areas. Furthermore, metagenomic analysis indicated separation by gene and pathway abundance patterns. Two pathways (glycogen biosynthesis I and D-galacturonate degradation I) were enriched in lowland samples, possibly related to the fruit-eating lifestyle in the lowland. Overall, we demonstrated that the more leaf-eating highland Japanese macaques harbor gut microbiota with higher leaf fermentation ability compared with the more fruit-eating lowland ones. Broad, non-specific taxonomic and functional gut microbiome differences suggest that this pattern may be driven by a complex interplay between many taxa and pathways rather than single functional traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The nucleotide sequence data reported are available in the DDBJ database under the accession numbers DRA009238 and DRA009275.

References

  1. Vogel ER, Haag L, Mitra-Setia T, van Schaik CP, Dominy NJ (2009) Foraging and ranging behavior during a fallback episode: Hylobates albibarbis and Pongo pygmaeus wurmbii compared. Am J Phys Anthropol 140:716–726. https://doi.org/10.1002/ajpa.21119

    Article  PubMed  Google Scholar 

  2. Ledevin R, Koyabu D (2019) Patterns and constraints of craniofacial variation in Colobine monkeys: disentangling the effects of phylogeny, allometry and diet. Evol Biol 46:14–34. https://doi.org/10.1007/s11692-019-09469-7

    Article  Google Scholar 

  3. Kries K, Barros MAS, Duytschaever G, Orkin JD, Janiak MC, Pessoa DMA, Melin AD (2018) Colour vision variation in leaf-nosed bats (Phyllostomidae): links to cave roosting and dietary specialization. Mol Ecol 27:3627–3640. https://doi.org/10.1111/mec.14818

    Article  PubMed  Google Scholar 

  4. Hayakawa T, Suzuki-Hashido N, Matsui A, Go Y (2014) Frequent expansions of the bitter taste receptor gene repertoire during evolution of mammals in the Euarchontoglires clade. Mol Biol Evol 31:2018–2031. https://doi.org/10.1093/molbev/msu144

    Article  PubMed  CAS  Google Scholar 

  5. Pajic P, Pavlidis P, Dean K, Neznanova L, Romano RA, Garneau D, Daugherity E, Globig A, Ruhl S, Gokcumen O (2019) Independent amylase gene copy number bursts correlate with dietary preferences in mammals. eLife 8: 22. doi: https://doi.org/10.7554/eLife.44628

  6. Toju H, Sota T (2006) Phylogeography and the geographic cline in the armament of a seed-predatory weevil: effects of historical events vs. natural selection from the host plant. Mol Ecol 15:4161–4173

    Article  CAS  PubMed  Google Scholar 

  7. Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711. https://doi.org/10.1126/science.1070315

    Article  PubMed  CAS  Google Scholar 

  8. Hanya G, Bernard H (2013) Functional response to fruiting seasonality by a primate seed predator, red leaf monkey (Presbytis rubicunda). Trop Ecol 54:383–395

    Google Scholar 

  9. Hanya G (2004) Seasonal variations in the activity budget of Japanese macaques in the coniferous forest of Yakushima: effects of food and temperature. Am J Primatol 63:165–177

    Article  PubMed  Google Scholar 

  10. Hanya G, Bernard H (2016) Seasonally consistent small home range and long ranging distance in Presbytis rubicunda in Danum Valley, Borneo. Int J Primatol 37:390–404

    Article  Google Scholar 

  11. Schuppli C, Forss SIF, Meulman EJM, Zweifel N, Lee KC, Rukmana E, Vogel ER, van Noordwijk MA, van Schaik CP (2016) Development of foraging skills in two orangutan populations: needing to learn or needing to grow? Front Zool 13:17. https://doi.org/10.1186/s12983-016-0178-5

    Article  CAS  Google Scholar 

  12. Hemingway C, Bynum N (2005) The influence of seasonality on primate diet and ranging. In: Brockman DK, van Schaik CP (eds) Seasonality in primates: studies of living and extinct human and non-human primates. Cambridge University Press, Cambridge, pp 57–104

    Chapter  Google Scholar 

  13. Ursell LK, Metcalf JL, Parfrey LW, Knight R (2012) Defining the human microbiome. Nutr Rev 70:S38–S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x

    Article  PubMed  Google Scholar 

  14. Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li JH, Xu JM, Li SC, Li DF, Cao JJ, Wang B, Liang HQ, Zheng HS, Xie YL, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu HM, Yu C, Li ST, Jian M, Zhou Y, Li YR, Zhang XQ, Li SG, Qin N, Yang HM, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–U70. https://doi.org/10.1038/nature08821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Collins FS, Lander ES, Rogers J, Waterston RH, Int Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945. https://doi.org/10.1038/nature03001

    Article  CAS  Google Scholar 

  16. Scully ED, Geib SM, Carlson JE, Tien M, McKenna D, Hoover K (2014) Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles. BMC Genomics 15:21. https://doi.org/10.1186/1471-2164-15-1096

    Article  CAS  Google Scholar 

  17. Cummings JH, Rombeau JL, Sakata T (1995) Physiological and clinical aspects of short chain fatty acids. Cambridge University Press, Cambridge

    Google Scholar 

  18. McNeil NI (1984) The contribution of the large-intestine to energy supplies in man. Am J Clin Nutr 39:338–342

    Article  CAS  PubMed  Google Scholar 

  19. Milton K, McBee RH (1983) Rates of fermentative digestion in the howler monkey, Alouatta palliata (primates, Ceboidea). Comp Biochem Physiol A Physiol 74:29–31. https://doi.org/10.1016/0300-9629(83)90706-5

    Article  CAS  Google Scholar 

  20. Osawa RO (1990) Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp isolated from feces of koalas. Appl Environ Microbiol 56:829–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsuchida S, Murata K, Ohkuma M, Ushida K (2017) Isolation of Streptococcus gallolyticus with very high degradability of condensed tannins from feces of the wild Japanese rock ptarmigans on Mt Tateyama. J Gen Appl Microbiol 63:195–198. https://doi.org/10.2323/jgam.2016.09.003

    Article  PubMed  CAS  Google Scholar 

  22. Clayton JB, Gomez A, Amato K, Knights D, Travis DA, Blekhman R, Knight R, Leigh S, Stumpf R, Wolf T, Glander KE, Cabana F, Johnson TJ (2018) The gut microbiome of nonhuman primates: lessons in ecology and evolution. Am J Primatol 80:27. https://doi.org/10.1002/ajp.22867

    Article  Google Scholar 

  23. Amato KR, Martinez-Mota R, Righini N, Raguet-Schofield M, Corcione FP, Marini E, Humphrey G, Gogul G, Gaffney J, Lovelace E, Williams L, Luong A, Dominguez-Bello MG, Stumpf RM, White B, Nelson KE, Knight R, Leigh SR (2016) Phylogenetic and ecological factors impact the gut microbiota of two neotropical primate species. Oecologia 180:717–733. https://doi.org/10.1007/s00442-015-3507-z

    Article  PubMed  Google Scholar 

  24. Zhao JS, Yao YF, Li DY, Xu HM, Wu JY, Wen AX, Xie M, Ni QY, Zhang MW, Peng GN, Xu HL (2018) Characterization of the gut microbiota in six geographical populations of Chinese rhesus macaques (Macaca mulatta), implying an adaptation to high-altitude environment. Microb Ecol 76:565–577. https://doi.org/10.1007/s00248-018-1146-8

    Article  PubMed  Google Scholar 

  25. Hayakawa T, Nathan S, Stark DJ, Saldivar DAR, Sipangkui R, Goossens B, Tuuga A, Clauss M, Sawada A, Fukuda S, Imai H, Matsuda I (2018) First report of foregut microbial community in proboscis monkeys: are diverse forests a reservoir for diverse microbiomes? Environ Microbiol Rep 10:655–662. https://doi.org/10.1111/1758-2229.12677

    Article  PubMed  CAS  Google Scholar 

  26. Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White BA, Garber PA (2014) The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (Alouatta pigra). Am J Phys Anthropol 155:652–664. https://doi.org/10.1002/ajpa.22621

    Article  PubMed  Google Scholar 

  27. Springer A, Fichtel C, Al-Ghalith GA, Koch F, Amato KR, Clayton JB, Knights D, Kappeler PM (2017) Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi). Ecol Evol 7:5732–5745. https://doi.org/10.1002/ece3.3148

    Article  PubMed  PubMed Central  Google Scholar 

  28. Raulo A, Ruokolainen L, Lane A, Amato K, Knight R, Leigh S, Stumpf R, White B, Nelson KE, Baden AL, Tecot SR (2018) Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): in search of the role of immunity in the evolution of sociality. J Anim Ecol 87:388–399. https://doi.org/10.1111/1365-2656.12781

    Article  PubMed  Google Scholar 

  29. Sun BH, Wang X, Bernstein S, Huffman MA, Xia DP, Gu ZY, Chen R, Sheeran LK, Wagner RS, Li JH (2016) Marked variation between winter and spring gut microbiota in free-ranging Tibetan macaques (Macaca thibetana). Sci Rep 6:8. https://doi.org/10.1038/srep26035

    Article  CAS  Google Scholar 

  30. Gomez A, Rothman JM, Petrzelkova K, Yeoman CJ, Vlckova K, Umana JD, Carr M, Modry D, Todd A, Torralba M, Nelson KE, Stumpf RM, Wilson BA, Blekhman R, White BA, Leigh SR (2016) Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. Isme J 10:514–526. https://doi.org/10.1038/ismej.2015.146

    Article  PubMed  CAS  Google Scholar 

  31. Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White BA, Garber PA (2015) The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb Ecol 69:434–443. https://doi.org/10.1007/s00248-014-0554-7

    Article  PubMed  CAS  Google Scholar 

  32. Mallott EK, Amato KR, Garber PA, Malhi RS (2018) Influence of fruit and invertebrate consumption on the gut microbiota of wild white-faced capuchins (Cebus capucinus). Am J Phys Anthropol 165:576–588. https://doi.org/10.1002/ajpa.23395

    Article  PubMed  Google Scholar 

  33. Hao YT, Wu SG, Xiong F, Tran NT, Jakovlic I, Zou H, Li WX, Wang GT (2017) Succession and fermentation products of grass carp (Ctenopharyngodon idellus) hindgut microbiota in response to an extreme dietary shift. Front Microbiol 8:12. https://doi.org/10.3389/fmicb.2017.01585

    Article  Google Scholar 

  34. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57:1–24. https://doi.org/10.1007/s00394-017-1445-8

    Article  PubMed  CAS  Google Scholar 

  35. Sanders JG, Beichman AC, Roman J, Scott JJ, Emerson D, McCarthy JJ, Girguis PR (2015) Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun 6:8. https://doi.org/10.1038/ncomms9285

    Article  CAS  Google Scholar 

  36. Amato KR, Ulanov A, Ju KS, Garber PA (2017) Metabolomic data suggest regulation of black howler monkey (Alouatta pigra) diet composition at the molecular level. Am J Primatol 79:10. https://doi.org/10.1002/ajp.22616

    Article  CAS  Google Scholar 

  37. Tilley JMA, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. J Br Grassland Soc 18:104–111

    Article  CAS  Google Scholar 

  38. Schmidt DA, Kerley MS, Dempsey JL, Porton IJ, Porter JH, Griffin ME, Ellersieck MR, Sadler WC (2005) Fiber digestibility by the orangutan (Pongo abelii): in vitro and in vivo. J Zoo Wildl Med 36:571–580. https://doi.org/10.1638/04-103.1

    Article  PubMed  Google Scholar 

  39. Kišidayová S, Váradyová Z, Pristaš P, Piknová M, Nigutová K, Petrzelková KJ, Profousová I, Schovancová K, Kamler J, Modry D (2009) Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. Am J Primatol 71:548–557. https://doi.org/10.1002/ajp.20687

    Article  PubMed  CAS  Google Scholar 

  40. Lambert JE, Fellner V (2012) In vitro fermentation of dietary carbohydrates consumed by African apes and monkeys: preliminary results for interpreting microbial and digestive strategy. Int J Primatol 33:263–281. https://doi.org/10.1007/s10764-011-9559-y

    Article  Google Scholar 

  41. Campbell JL, Williams CV, Eisemann JH (2002) Fecal inoculum can be used to determine the rate and extent of in vitro fermentation of dietary fiber sources across three lemur species that differ in dietary profile: Varecia variegata, Eulemur fulvus and Hapalemur griseus. J Nutr 132:3073–3080

    Article  CAS  PubMed  Google Scholar 

  42. Ushida K, Fujita S, Ohashi G (2006) Nutritional significance of the selective ingestion of Albizia zygia gum exudate by wild chimpanzees in Bossou, Guinea. Am J Primatol 68:143–151. https://doi.org/10.1002/ajp.20212

    Article  PubMed  CAS  Google Scholar 

  43. Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, Travis DA, Long HT, Tuan BV, Minh VV, Cabana F, Nadler T, Toddes B, Murphy T, Glander KE, Johnson TJ, Knights D (2016) Captivity humanizes the primate microbiome. Proc Natl Acad Sci U S A 113:10376–10381. https://doi.org/10.1073/pnas.1521835113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lee W, Hayakawa T, Kiyono M, Yamabata N, Hanya G (2019) Gut microbiota composition of Japanese macaques associates with extent of human encroachment. Am J Primatol 81:e23072

    Article  PubMed  Google Scholar 

  45. Shimizu KK, Kudoh H, Kobayashi MJ (2011) Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology. Ann Bot 108:777–787. https://doi.org/10.1093/aob/mcr180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hanya G, Noma N, Agetsuma N (2003) Altitudinal and seasonal variations in the diet of Japanese macaques in Yakushima. Primates 44:51–59

    Article  PubMed  Google Scholar 

  47. Agetsuma N, Nakagawa N (1998) Effects of habitat differences on feeding behaviors of Japanese monkeys: comparison between Yakushima and Kinkazan. Primates 39:275–289

    Article  Google Scholar 

  48. Hanya G, Yoshihiro S, Zamma K, Matsubara H, Ohtake M, Kubo R, Noma N, Agetsuma N, Takahata Y (2004) Environmental determinants of the altitudinal variations in relative group densities of Japanese macaques on Yakushima. Ecol Res 19:485–493

    Article  Google Scholar 

  49. Hanya G (2004) Diet of a Japanese macaque troop in the coniferous forest of Yakushima. Int J Primatol 25:55–71

    Article  Google Scholar 

  50. Hill DA (1997) Seasonal variation in the feeding behavior and diet of Japanese macaques (Macaca fuscata yakui) in lowland forest of Yakushima. Am J Primatol 43:305–322

    Article  CAS  PubMed  Google Scholar 

  51. Hayaishi S, Kawamoto Y (2006) Low genetic diversity and biased distribution of mitochondrial DNA haplotypes in the Japanese macaque (Macaca fuscata yakui) on Yakushima Island. Primates 47:158–164. https://doi.org/10.1007/s10329-005-0169-1

    Article  PubMed  Google Scholar 

  52. Yamagiwa J (2008) History and present scope of field studies on Macaca fuscata yakui at Yakushima Island, Japan. Int J Primatol 29:49–64

    Article  Google Scholar 

  53. Hanya G, Kiyono M, Yamada A, Suzuki K, Furukawa M, Yoshida Y, Chijiiwa A (2006) Not only annual food abundance but also fallback food quality determines the Japanese macaque density: evidence from seasonal variations in home range size. Primates 47:275–278

    Article  PubMed  Google Scholar 

  54. Kurihara Y, Hanya G (2015) Comparison of feeding behavior between two different-sized groups of Japanese macaques (Macaca fuscata yakui). Am J Primatol 77:986–1000. https://doi.org/10.1002/ajp.22429

    Article  PubMed  Google Scholar 

  55. Kurihara Y, Kinoshita K, Shiroishi I, Hanya G (2020) Seasonal variation in energy balance of wild Japanese macaques (Macaca fuscata yakui) in a warm-temperate forest: a preliminary assessment in the coastal forest of Yakushima. Primates. https://doi.org/10.1007/s10329-020-00797-3

  56. Hayakawa T, Sawada A, Tanabe AS, Fukuda S, Kishida T, Kurihara Y, Matsushima K, Liu J, Akomo-Okoue EF, Gravena W, Kashima M, Suzuki M, Kadowaki K, Suzumura T, Inoue E, Sugiura H, Hanya G, Agata K (2018) Improving the standards for gut microbiome analysis of fecal samples: insights from the field biology of Japanese macaques on Yakushima Island. Primates 59:423–436. https://doi.org/10.1007/s10329-018-0671-x

    Article  PubMed  Google Scholar 

  57. Blümmel M, Ørskov ER (1993) Comparison of invitro gas-production and nylon bag degradability of roughages in predicting feed-intake in cattle. Anim Feed Sci Technol 40:109–119. https://doi.org/10.1016/0377-8401(93)90150-i

    Article  Google Scholar 

  58. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:11. https://doi.org/10.1093/nar/gks808

    Article  CAS  Google Scholar 

  59. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581. https://doi.org/10.1038/nmeth.3869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–2935. https://doi.org/10.1093/bioinformatics/btt509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Rodrigues JFM, von Mering C (2014) HPC-CLUST: distributed hierarchical clustering for large sets of nucleotide sequences. Bioinformatics 30:287–288. https://doi.org/10.1093/bioinformatics/btt657

    Article  CAS  Google Scholar 

  62. Rodrigues JFM, Schmidt TSB, Tackmann J, von Mering C (2017) MAPseq: highly efficient k-mer search with confidence estimates, for rRNA sequence analysis. Bioinformatics 33:3808–3810. https://doi.org/10.1093/bioinformatics/btx517

    Article  CAS  Google Scholar 

  63. Tackmann J, Frederico J, Rodrigues M, von Mering C (2019) Rapid inference of direct interactions in large-scale ecological networks from heterogeneous microbial sequencing data. Cell Syst 9:286. https://doi.org/10.1016/j.cels.2019.08.002

    Article  PubMed  CAS  Google Scholar 

  64. Price MN, Dehal PS, Arkin AP (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5:10. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  Google Scholar 

  65. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  PubMed  CAS  Google Scholar 

  66. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/aem.01541-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176

    Article  PubMed  CAS  Google Scholar 

  69. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, Lipson KS, Knight R, Caporaso JG, Segata N, Huttenhower C (2018) Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods 15:962. https://doi.org/10.1038/s41592-018-0176-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Suzek BE, Wang YQ, Huang HZ, McGarvey PB, Wu CH, UniProt C (2015) UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31:926–932. https://doi.org/10.1093/bioinformatics/btu739

    Article  PubMed  CAS  Google Scholar 

  71. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang PF, Karp PD (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 42:D459–D471. https://doi.org/10.1093/nar/gkt1103

    Article  PubMed  CAS  Google Scholar 

  72. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559. https://doi.org/10.1038/nature12820

    Article  PubMed  CAS  Google Scholar 

  73. Hashizume K, Tsukahara T, Yamada K, Koyama H, Ushida K (2003) Megasphaera elsdenii JCM1772(T) normalizes hyperlactate production in the large intestine of fructooligosaccharide-fed rats by stimulating butyrate production. J Nutr 133:3187–3190

    Article  CAS  PubMed  Google Scholar 

  74. Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrazek J, Koppova I, Carbonero F, Ulanov A, Modry D, Todd A, Torralba M, Nelson KE, Gaskins HR, Wilson B, Stumpf RM, White BA, Leigh SR (2015) Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol Ecol 24:2551–2565. https://doi.org/10.1111/mec.13181

    Article  PubMed  CAS  Google Scholar 

  75. Shortt C, Hasselwander O, Meynier A, Nauta A, Fernandez EN, Putz P, Rowland I, Swann J, Turk J, Vermeiren J, Antoine JM (2018) Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr 57:25–49. https://doi.org/10.1007/s00394-017-1546-4

    Article  PubMed  CAS  Google Scholar 

  76. Suzuki S, Hill DA, Sprague DS (1998) Intertroop transfer and dominance rank structure of nonnatal male Japanese macaques in Yakushima, Japan. Int J Primatol 19:703–722

    Article  Google Scholar 

  77. Deusch S, Camarinha-Silva A, Conrad J, Beifuss U, Rodehutscord M, Seifert J (2017) A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments. Front Microbiol 8:21. https://doi.org/10.3389/fmicb.2017.01605

    Article  Google Scholar 

  78. Quan JP, Cai GY, Yang M, Zang ZH, Ding RR, Wang XW, Zhuang ZW, Zhou SP, Li SY, Yang HQ, Li ZC, Zheng EG, Huang W, Yang J, Wu ZF (2019) Exploring the fecal microbial composition and metagenomic functional capacities associated with feed efficiency in commercial DLY pigs. Front Microbiol 10:12. https://doi.org/10.3389/fmicb.2019.00052

    Article  Google Scholar 

  79. Porter NT, Martens EC (2017) The critical roles of polysaccharides in gut microbial ecology and physiology. In: Gottesman S (ed) Annual review of microbiology, vol 71. Annual Reviews, Palo Alto, pp 349–369

    Google Scholar 

  80. Consortium THMP (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. https://doi.org/10.1038/nature11234

    Article  CAS  Google Scholar 

  81. Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, Farjalla VF, Doebeli M (2017) High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol 1:12. https://doi.org/10.1038/s41559-016-0015

    Article  Google Scholar 

  82. Almeida A, Mitchell AL, Tarkowska A, Finn RD (2018) Benchmarking taxonomic assignments based on 16S rRNA gene profiling of the microbiota from commonly sampled environments. Gigascience 7:10. https://doi.org/10.1093/gigascience/giy054

    Article  Google Scholar 

  83. Hanya G, Kiyono M, Hayaishi S (2007) Behavioral thermoregulation of wild Japanese macaques: comparisons between two subpopulations. Am J Primatol 69:802–815. https://doi.org/10.1002/ajp.20397|ISSN.0275-2565

  84. Shulman RG, Rothman DL (2001) 13C NMR of intermediary metabolism: implications for systemic physiology. Annu Rev Physiol 63:15–48. https://doi.org/10.1146/annurev.physiol.63.1.15

    Article  PubMed  CAS  Google Scholar 

  85. Agetsuma N, Noma N (1995) Rapid shifting of foraging pattern by Yakushima macaques (Macaca fuscata yakui) in response to heavy fruiting of Myrica rubra. Int J Primatol 16:247–260

    Article  Google Scholar 

  86. Noma N, Yumoto T (1997) Fruiting phenology of animal-dispersed plants in response to winter migration of frugivores in a warm temperate forest on Yakushima Island, Japan. Ecol Res 12:119–129

    Article  Google Scholar 

  87. Kuivanen J, Biz A, Richard P (2019) Microbial hexuronate catabolism in biotechnology. AMB Express 9:11. https://doi.org/10.1186/s13568-019-0737-1

    Article  Google Scholar 

  88. Hale VL, Tan CL, Niu KF, Yang YQ, Cui DY, Zhao HX, Knight R, Amato KR (2016) Effects of field conditions on fecal microbiota. J Microbiol Methods 130:180–188. https://doi.org/10.1016/j.mimet.2016.09.017

    Article  PubMed  Google Scholar 

  89. Sawada A, Sakaguchi E, Hanya G (2011) Digesta passage time, digestibility, and total gut fill in captive Japanese macaques (Macaca fuscata): effects food type and food intake level. Int J Primatol 32:390–405. https://doi.org/10.1007/s10764-010-9476-5

    Article  Google Scholar 

  90. Lu HP, Liu PY, Wang YB, Hsieh JF, Ho HC, Huang SW, Lin CY, Hsieh CH, Yu HT (2018) Functional characteristics of the flying squirrel’s cecal microbiota under a leaf-based diet, based on multiple meta-omic profiling. Front Microbiol 8:13. https://doi.org/10.3389/fmicb.2017.02622

    Article  Google Scholar 

  91. Ushida K, Tsuchida S, Ogura Y, Hayashi T, Sawada A, Hanya G (2016) Draft genome sequences of Sarcina ventriculi strains isolated from wild Japanese macaques in Yakushima Island. Microbiol Resour Ann 4:2. https://doi.org/10.1128/genomeA.01694-15

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank our friends and colleagues in Yakushima, the fellow students and staff who joined the Yakushima Field Science Course in the spring of 2016, and the administrative staff who made the course possible behind the scenes. Drs. Misako Yamazaki, Ayako Izuno, Catherine Aquino, Lucas Mohn, Sirisha Aluri, Sayaka Tsuchida, Masayuki Suzuki, and members of the Department of Evolutionary Biology and Environmental Studies, University of Zurich, and Functional Genomics Center Zurich helped us with genetic and SCFA analyses. The Sarugoya Committee and Wildlife Research Center of Kyoto University offered us excellent facilities for fieldwork. Permission to conduct this study was given by the Yakushima Forest Ecosystem Conservation Center and Kagoshima Prefecture.

Funding

The study was financed by the Leading Graduate Program of Primatology and Wildlife Science of Kyoto University, MEXT Grant-in-Aid for Promotion of Joint International Research (Fostering Joint International Research) (15KK0256 and 19KK0186) and for Scientific Research B (25291100 and 18H02508) to GH, and by the University Research Priority Program of Evolution in Action from University of Zurich.

Author information

Authors and Affiliations

Authors

Contributions

Goro Hanya, Akiko Sawada, Christian von Mering, Rie Shimizu-Inatsugi, Kentaro K. Shimizu, and Kazunari Ushida designed the research. Goro Hanya, Akiko Sawada, Sanjeeta Sharma Pokharel, Valdevino Gisele de Castro Maciel, Akito Toge, Kota Kuroki, Ryoma Otsuka, Ryoma Mabuchi, Jie Liu, Takashi Hayakawa, and Kazunari Ushida collected samples and performed the in vitro fermentation assay. Goro Hanya, Akiko Sawada, Wanyi Lee, Eri Yamasaki, Rie Shimizu-Inatsugi, and Takashi Hayakawa conducted the genetic analyses. Janko Tackmann and Masaomi Hatakeyama analyzed the sequence data. Goro Hanya wrote the manuscript.

Corresponding author

Correspondence to Goro Hanya.

Ethics declarations

During the fieldwork, we adhered to the “Guideline for field research of non-human primates” of the Primate Research Institute, Kyoto University. Furthermore, our procedure complied with ARRIVE guidelines for the use of animals in research (http://www.nc3rs.org.uk/ARRIVE), as well as the legal requirements of Japan. No prior consent from the Japanese government is required to export biological samples from Japan in the context of Convention on Biological Diversity (http://www.env.go.jp/en/nature/biodiv/abs/index.html).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

During the fieldwork, we adhered to the “Guideline for field research of non-human primates” of the Primate Research Institute, Kyoto University. According to the guideline, our study is purely non-invasive and does not need approval from an ethical committee.

Electronic Supplementary Material

ESM 1

(PDF 68 kb)

ESM 2

(PDF 6891 kb)

ESM 3

(PDF 125 kb)

ESM 4

(PDF 831 kb)

ESM 5

(PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanya, G., Tackmann, J., Sawada, A. et al. Fermentation Ability of Gut Microbiota of Wild Japanese Macaques in the Highland and Lowland Yakushima: In Vitro Fermentation Assay and Genetic Analyses. Microb Ecol 80, 459–474 (2020). https://doi.org/10.1007/s00248-020-01515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01515-8

Keywords

Navigation