Skip to main content

Advertisement

Log in

Different Recovery Processes of Soil Ammonia Oxidizers from Flooding Disturbance

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Understanding how microorganisms respond to environmental disturbance is one of the key focuses in microbial ecology. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are responsible for ammonia oxidation which is a crucial step in the nitrogen cycle. Although the physiology, distribution, and activity of AOA and AOB in soil have been extensively investigated, their recovery from a natural disturbance remains largely unknown. To assess the recovery capacities, including resistance and resilience, of AOA and AOB, soil samples were taken from a reservoir riparian zone which experienced periodically water flooding. The samples were classified into three groups (flooding, recovery, and control) for a high-throughput sequencing and quantitative PCR analysis. We used a relative quantitative index of both the resistance (RS) and resilience (RL) to assess the variation of gene abundance, alpha-diversity, and community composition. The AOA generally demonstrated a better recovery capability after the flooding disturbance compared to AOB. In particular, AOA were more resilient after the flooding disturbance. Taxa within the AOA and AOB showed different RS and RL values, with the most abundant taxa showing in general the highest RS indices. Soil NH4+ and Fe2+/Fe3+ were the main variables controlling the key taxa of AOA and AOB and probably influenced the resistance and resilience properties of AOA and AOB communities. The distinct mechanisms of AOA and AOB in maintaining community stability against the flooding disturbance might be linked to the different life-history strategies: the AOA community was more likely to represent r-strategists in contrast to the AOB community following a K-life strategy. Our results indicated that the AOA may play a vital role in ammonia oxidation in a fluctuating habitat and contribute to the stability of riparian ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rykiel EJ (1985) Towards a definition of ecological disturbance. Aust. J. Ecol. 10:361–365. https://doi.org/10.1111/j.1442-9993.1985.tb00897.x

    Article  Google Scholar 

  2. Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JBH, Matulich KL, Schmidt TM, Handelsman J (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417. https://doi.org/10.3389/fmicb.2012.00417

    Article  PubMed  PubMed Central  Google Scholar 

  3. Paine RT, Tegner MJ, Johnson EA (1998) Compounded perturbations yield ecological surprises. Ecosystems 1:535–545. https://doi.org/10.1007/s100219900049

    Article  Google Scholar 

  4. Bender EA, Case TJ, Gilpin ME (1984) Perturbation experiments in community ecology: theory and practice. Ecology 65:1–13. https://doi.org/10.2307/1939452

    Article  Google Scholar 

  5. Collie JS, Richardson K, Steele JH (2004) Regime shifts: can ecological theory illuminate the mechanisms? Prog. Oceanogr. 60:281–302. https://doi.org/10.1016/j.pocean.2004.02.013

    Article  Google Scholar 

  6. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711

    Article  Google Scholar 

  7. Meyer AF, Lipson DA, Martin AP, Schadt CW, Schmidt SK (2004) Molecular and metabolic characterization of cold-tolerant alpine soil Pseudomonas sensu stricto. Appl. Environ. Microbiol. 70:483–489. https://doi.org/10.1128/AEM.70.1.483-489.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allison SD, Martiny JBH (2008) Colloquium paper: resistance, resilience, and redundancy in microbial communities. PNAS 105:11512–11519. https://doi.org/10.1073/pnas.0801925105

    Article  PubMed  PubMed Central  Google Scholar 

  9. Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37:112–129. https://doi.org/10.1111/j.1574-6976.2012.00343.x

    Article  CAS  PubMed  Google Scholar 

  10. Karakoç C, Singer A, Johst K, Harms H, Chatzinotas A (2017) Transient recovery dynamics of a predator–prey system under press and pulse disturbances. BMC Ecol. 17:13. https://doi.org/10.1186/s12898-017-0123-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. IPCC (2007) Climate Change 2007: synthesis report. In: Pachauri, RK and Reisinger, A (eds) Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Changed. IPCC, Geneva, Switzerland, pp 104

  12. You J, Das A, Dolan EM, Hu ZQ (2009) Ammonia-oxidizing archaea involved in nitrogen removal. Water Res. 43:1801–1809. https://doi.org/10.1016/j.watres.2009.01.016

    Article  CAS  PubMed  Google Scholar 

  13. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546. https://doi.org/10.1038/nature03911

    Article  CAS  PubMed  Google Scholar 

  14. Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. PNAS 105:2134–2139. https://doi.org/10.1073/pnas.0708857105

    Article  PubMed  PubMed Central  Google Scholar 

  15. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. PNAS 102:14683–14688. https://doi.org/10.1073/pnas.0506625102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. https://doi.org/10.1038/nature04983

    Article  CAS  PubMed  Google Scholar 

  17. Yang F, Liu WW, Wang J, Liao L, Wang Y (2012) Riparian vegetation’s responses to the new hydrological regimes from the Three Gorges Project: clues to revegetation in reservoir water-level-fluctuation zone. Acta Ecol. Sin. 32:89–98. https://doi.org/10.1016/j.chnaes.2012.02.004

    Article  Google Scholar 

  18. Jia ZJ, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ. Microbiol. 11:1658–1671. https://doi.org/10.1111/j.1462-2920.2009.01891.x

    Article  CAS  PubMed  Google Scholar 

  19. Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol. 14:207–212. https://doi.org/10.1016/j.tim.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  20. He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ. Microbiol. 9:2364–2374. https://doi.org/10.1111/j.1462-2920.2007.01358.x

    Article  CAS  PubMed  Google Scholar 

  21. Santoro AE, Francis CA, De Sieyes NR, Boehm AB (2008) Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ. Microbiol. 10:1068–1079. https://doi.org/10.1111/j.1462-2920.2007.01547.x

    Article  CAS  PubMed  Google Scholar 

  22. de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ. Microbiol. 10:810–818. https://doi.org/10.1111/j.1462-2920.2007.01506.x

    Article  CAS  PubMed  Google Scholar 

  23. Thion C, Prosser JI (2014) Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. FEMS Microbiol. Ecol. 90:380–389. https://doi.org/10.1111/1574-6941.12395

    Article  CAS  PubMed  Google Scholar 

  24. Liu S, Hu BL, He ZF, Zhang B, Tian GM, Zheng P, Fang F (2015) Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria. Appl Microbiol Biotechnol 99:8587–8596. https://doi.org/10.1007/s00253-015-6750-7

    Article  CAS  PubMed  Google Scholar 

  25. China Three Gorges Corporation (2017) Brief introduction of Three Gorges Corporation. http://www.ctgpc.com/en/_304051/_304525/index.html. Accessed 1 Mar 2017

  26. Bao YH, Gao P, He XB (2015) The water-level fluctuation zone of Three Gorges Reservoir—a unique geomorphological unit. Earth-Sci. Rev. 150:14–24. https://doi.org/10.1016/j.earscirev.2015.07.005

    Article  Google Scholar 

  27. Wen Z, Ma M, Zhang C, Yi X, Chen J, Wu S (2017) Estimating seasonal aboveground biomass of a riparian pioneer plant community: an exploratory analysis by canopy structural data. Ecol. Indic. 83:441–450. https://doi.org/10.1016/j.ecolind.2017.07.048

    Article  Google Scholar 

  28. Ye C, Li SY, Yang YY, Xiao S, Zhang JQ, Zhang QF (2015) Advancing analysis of spatio-temporal variations of soil nutrients in the water level fluctuation zone of China’s Three Gorges Reservoir using self-organizing map. PLoS One 10:e0121210. https://doi.org/10.1371/journal.pone.0121210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stumm W, Sulzberger B (1992) The cycling of iron in natural environments: considerations based on laboratory studies of heterogeneous redox processes. Geochim Cosmochim Acta 56:3233–3257. https://doi.org/10.1016/0016-7037(92)90301-X

    Article  CAS  Google Scholar 

  30. Zheng GD, Takano B, Kuno A, Matsuo M (2001) Iron speciation in modern sediment from Erhai Lake, southwestern China: redox conditions in an ancient environment. Appl. Geochem. 16:1201–1213. https://doi.org/10.1016/S0883-2927(01)00016-6

    Article  Google Scholar 

  31. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sediment. Res. 44:242–248. https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D

    Article  CAS  Google Scholar 

  32. Bao SD (2000) Chemical analysis for agricultural soil. China Agriculture Press, Beijing (In Chinese)

    Google Scholar 

  33. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ. Microbiol. 14:525–539. https://doi.org/10.1111/j.1462-2920.2011.02666.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Norton JM, Alzerreca JJ, Suwa Y, Klotz MG (2002) Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch. Microbiol. 177:139–149. https://doi.org/10.1007/s00203-001-0369-z

    Article  CAS  PubMed  Google Scholar 

  36. Xiang XJ, He D, He JS, Myrold DD, Chu HY (2017) Ammonia-oxidizing bacteria rather than archaea respond to short-term urea amendment in an alpine grassland. Soil Biol. Biochem. 107:218–225. https://doi.org/10.1016/j.soilbio.2017.01.012

    Article  CAS  Google Scholar 

  37. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen YL, Xu ZW, Hu HW, Hu YJ, Hao ZP, Jiang Y, Chen BD (2013) Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Appl. Soil Ecol. 68:36–45. https://doi.org/10.1016/j.apsoil.2013.03.006

    Article  Google Scholar 

  39. Ouyang Y, Norton JM, Stark JM, Reeve JR, Habteselassie MY (2016) Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol. Biochem. 96:4–15. https://doi.org/10.1016/j.soilbio.2016.01.012

    Article  CAS  Google Scholar 

  40. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl. Environ. Microbiol. 66:5368–5382. https://doi.org/10.1128/Aem.66.12.5368-5382.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Orwin KH, Wardle DA (2004) New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem. 36:1907–1912. https://doi.org/10.1016/j.soilbio.2004.04.036

    Article  CAS  Google Scholar 

  42. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. https://doi.org/10.1126/science.199.4335.1302

    Article  CAS  PubMed  Google Scholar 

  43. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and Bacteria. Nature 461:976–979. https://doi.org/10.1038/nature08465

    Article  CAS  PubMed  Google Scholar 

  44. Ke X, Lu Y (2012) Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil. FEMS Microbiol. Ecol. 80:87–97. https://doi.org/10.1111/j.1574-6941.2011.01271.x

    Article  CAS  PubMed  Google Scholar 

  45. Xie Z, Le Roux X, Wang CP, Gu ZK, An M, Nan HY, Chen BZ, Li F, Liu YJ, Du GZ, Feng HY, Ma XJ (2014) Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows. Soil Biol. Biochem. 77:89–99. https://doi.org/10.1016/j.soilbio.2014.06.024

    Article  CAS  Google Scholar 

  46. Lee SH, Sorensen JW, Grady KL, Tobin TC, Shade A (2017) Divergent extremes but convergent recovery of bacterial and archaeal soil communities to an ongoing subterranean coal mine fire. ISME J 11:1447–1459. https://doi.org/10.1038/ismej.2017.1

    Article  PubMed  PubMed Central  Google Scholar 

  47. Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sørensen SJ, Bååth E, Bloem J, Ruiter PCD (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90:279–294. https://doi.org/10.1034/j.1600-0706.2000.900208.x

    Article  Google Scholar 

  48. Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326. https://doi.org/10.1038/307321a0

    Article  Google Scholar 

  49. Chen J, Nie YX, Liu W, Wang ZF, Shen WJ (2017) Ammonia-oxidizing archaea are more resistant than denitrifiers to seasonal precipitation changes in an acidic subtropical forest soil. Front Microbiol 8:1384. https://doi.org/10.3389/fmicb.2017.01384

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ng EL, Patti AF, Rose MT, Schefe CR, Smernik RJ, Cavagnaro TR (2015) Do organic inputs alter resistance and resilience of soil microbial community to drying? Soil Biol Biochem 81:58–66. https://doi.org/10.1016/j.soilbio.2014.10.028

    Article  CAS  Google Scholar 

  51. Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54:777–784. https://doi.org/10.1641/0006-3568(2004)054[0777:Tuossp]2.0.Co;2

    Article  Google Scholar 

  52. Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat. Geosci. 2:621–624. https://doi.org/10.1038/ngeo613

    Article  CAS  Google Scholar 

  53. Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ (2010) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol. Ecol. 72:386–394. https://doi.org/10.1111/j.1574-6941.2010.00861.x

    Article  CAS  PubMed  Google Scholar 

  54. Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol. Ecol. 70:99–108. https://doi.org/10.1111/j.1574-6941.2009.00725.x

    Article  CAS  PubMed  Google Scholar 

  55. de Vries FT, Shade A (2013) Controls on soil microbial community stability under climate change. Front Microbiol 4:265. https://doi.org/10.3389/fmicb.2013.00265

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fetzer I, Johst K, Schäwe R, Banitz T, Harms H, Chatzinotas A (2015) The extent of functional redundancy changes as species’ roles shift in different environments. PNAS 112:14888–14893. https://doi.org/10.1073/pnas.1505587112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, Bardgett RD (2012) Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Chang. 2:276–280. https://doi.org/10.1038/nclimate1368

    Article  Google Scholar 

  58. De Leij FA, Whipps JM, Lynch JM (1994) The use of colony development for the characterization of bacterial communities in soil and on roots. Microb Ecol 27:81–97. https://doi.org/10.1007/BF00170116

    Article  PubMed  Google Scholar 

  59. Langer U, Böhme L, Böhme F (2004) Classification of soil microorganisms based on growth properties: a critical view of some commonly used terms. J Plant Nutr Soil Sci 167:267–269. https://doi.org/10.1002/jpln.200421362

    Article  CAS  Google Scholar 

  60. Verhamme DT, Prosser JI, Nicol GW (2011) Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5:1067–1071. https://doi.org/10.1038/ismej.2010.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bapiri A, Baath E, Rousk J (2010) Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil. Microb. Ecol. 60:419–428. https://doi.org/10.1007/s00248-010-9723-5

    Article  PubMed  Google Scholar 

  62. Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR (2012) Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93:1867–1879. https://doi.org/10.1890/11-1745.1

    Article  PubMed  Google Scholar 

  63. Wang YF, Gu JD (2013) Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland. Appl. Environ. Microbiol. 97:7015–7033. https://doi.org/10.1007/s00253-012-4430-4

    Article  CAS  Google Scholar 

  64. Wang SY, Wang Y, Feng XJ, Zhai LM, Zhu GB (2011) Quantitative analyses of ammonia-oxidizing archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Appl Microbiol Biotechnol 90:779–787. https://doi.org/10.1007/s00253-011-3090-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [41303053, 41571497, 41301540]. We are grateful to the Kaizhou Science & Technology Commission for the assistance in sampling and background data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Jun Wu or Yu Wang.

Electronic supplementary material

ESM 1

(DOC 1613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, F., Ma, MH., Op den Camp, H.J.M. et al. Different Recovery Processes of Soil Ammonia Oxidizers from Flooding Disturbance. Microb Ecol 76, 1041–1052 (2018). https://doi.org/10.1007/s00248-018-1183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1183-3

Keywords

Navigation