Skip to main content
Log in

Sulphide Resistance in the Cyanobacterium Microcystis aeruginosa: a Comparative Study of Morphology and Photosynthetic Performance Between the Sulphide-Resistant Mutant and the Wild-Type Strain

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The cyanobacterium Microcystis aeruginosa is a mesophilic freshwater organism, which cannot tolerate sulphide. However, it was possible to isolate a sulphide-resistant (S r) mutant strain that was able to survive in a normally lethal medium sulphide. In order to evaluate the cost of the mutation conferring sulphide resistance in the S r strain of M. aeruginosa, the morphology and the photosynthetic performance were compared to that found in the wild-type, sulphide-sensitive (S s) strain. An increase in size and a disrupted morphology was observed in S r cells in comparison to the S s counterpart. Phycoerythrin and phycocyanin levels were higher in the S r than in the S s cells, whereas a higher carotenoid content, per unit volume, was found in the S s strain. The irradiance-saturated photosynthetic oxygen-production rate (GPR max) and the photosynthetic efficiency (measured both by oxygen production and fluorescence, α GPR and α ETR) were lower in the S r strain than in the wild-type. These results appear to be the result of package effect. On the other hand, the S r strain showed higher quantum yield of non-photochemical quenching, especially those regulated mechanisms (estimated throughout q N and Y(NPQ)) and a significantly lower slope in the maximum quantum yield of light-adapted samples (F v ′/F m ′) compared to the S s strain. These findings point to a change in the regulation of the quenching of the transition states (q T ) in the S r strain which may be generated by a change in the distribution of thylakoidal membranes, which somehow could protect metalloenzymes of the electron transport chain from the lethal effect of sulphide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a*:

Chlorophyll-specific optical absorption cross section

Chla :

Chlorophyll a

E :

Incident irradiance

E 0.5 :

Half-saturation irradiance

ETR :

Electron transport rate computed as Y(II) × E × a* × 0.5

F 0 :

Minimal fluorescence of dark-adapted cells

F 0′:

Minimal fluorescence of illuminated cells

F t :

Steady-state fluorescence

F m :

Maximal fluorescence of dark-adapted cells

F m ′:

Maximal fluorescence of illuminated cells

F v :

Variable fluorescence of dark-adapted cells computed as F m  − F 0

F v ′:

Variable fluorescence of illuminated cells computed as F m ′ − F 0

F v /F m :

Maximum quantum yield of dark-adapted cells computed as (F m − F 0) / F m

F v ′/F m ′:

Maximum quantum yield of illuminated cells computed as (F m ′ − F 0′) / F m

GPR :

Gross photosynthetic oxygen-production rate

GPR max :

Irradiance-saturated GPR

NPQ :

Non-photochemical quenching parameter computed as Y(NPQ) / Y(NO)

PC:

Phycocyanin

PE:

Phycoerythrin

q E :

Energy-dependent quenching coefficient

q I :

Photoinhibitory quenching coefficient

q N :

Non-photochemical quenching coefficient computed as 1 − [(F m ′ − F 0′) / (F m  − F 0)]

q P :

Photochemical quenching coefficient computed as (F m ′ − F t ) / (F m ′ − F 0′)

q T :

Quenching associated with “state 1–state 2” transition

S r :

Sulphide-resistant (strain)

S s :

Sulphide-sensitive (strain)

TC:

Total carotenoids

Y(II):

Photochemical efficiency of PSII computed as (F m- F t)/F m

Y(NO):

Quantum yield of non-regulated non-photochemical quenching computed as F t  / F m

Y(NPQ):

Quantum yield of regulated non-photochemical quenching computed as (F t  / F m ′) − (F t  / F m )

α ETR :

Photosynthetic efficiency calculated from ETR-E relationship

α GPR :

Photosynthetic efficiency calculated from GPR-E relationship

References

  1. Li C, Love GD, Lyons TW, Fike DA, Sessions AL, Chu X (2010) A stratified redox model for the Ediacaran ocean. Science 328:80–83

    Article  CAS  PubMed  Google Scholar 

  2. Grice K, Cao C, Love GD, Böttcher ME, Twitchett RJ, Grosjean E, Summons RE, Turgeon SC, Dunning W, Jin Y (2005) Photic zone euxinia during the Permian-Trassic superanoxic event. Science 307:706–709

    Article  CAS  PubMed  Google Scholar 

  3. Mathai JC, Missner A, Kügler P, Saparov SM, Zeidel ML, Lee JK, Pohl P (2009) No facilitator required for membrane transport of hydrogen sulphide. Proc Natl Acad Sci U S A 106:16633–16638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bagarinao T (1992) Sulphide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat Toxicol 24:21–62

    Article  CAS  Google Scholar 

  5. Stal LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–32

    Article  CAS  Google Scholar 

  6. Cohen Y, Jørgensen BB, Revsbech NP, Poplawski R (1986) Adaptation to hydrogen sulphide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51:398–407

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller SR, Bebout BM (2004) Variation in sulphide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats. Appl Environ Microbiol 70:736–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Castenholz RW (1977) The effect of sulphide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb Ecol 3:79–105

    Article  CAS  PubMed  Google Scholar 

  9. Dodds WK, Castenholz RW (1990) Sulfide and pH effects on variable fluorescence of photosystem II in two strains of the cyanobacterium Oscillatoria amphigranulata. Photosynth Res 24:265–271

    Article  CAS  PubMed  Google Scholar 

  10. Cohen Y, Jørgensen BB, Padan E, Shilo M (1975) Sulfide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257:489–491

    Article  CAS  Google Scholar 

  11. Czyzewski BK, Wang DN (2012) Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483:494–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernández-Arjona M, Bañares-España E, García-Sanchez MJ, Hernández-Lopez M, López-Rodas V, Costas E, Flores-Moya A (2013) Disentangling mechanisms involved in the adaptation of photosynthetic microorganisms to the extreme sulphureous water from Los Baños de Vilo (S Spain). Microb Ecol 66:742–751

    Article  Google Scholar 

  13. Cooper S (1991) Bacterial growth and division. Biochemistry and regulation of prokaryotic and eukaryotic division cells. Academic, San Diego

    Google Scholar 

  14. Wellburn AR (1994) The spectral determinations of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  15. Beer S, Eshel A (1985) Determining phycoerithrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Freshwat Res 36:785–792

    Article  CAS  Google Scholar 

  16. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4: 1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  17. Schreiber U (1986) Detection of rapid induction kinetics with a new type of high-frecuency modulater chlorophyll fluorometer. Photosynth Res 9:261–272

    Article  CAS  PubMed  Google Scholar 

  18. Maxwell K, Johnson GN (2000) Chrorophyll fluorescence - a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  19. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  20. Dubinsky Z, Falkowski PG, Post AF, Hes U (1986) A system for measuring phytoplankton photosynthesis in a defined light field with an oxygen electrode. J Plankton Res 9:607–612

    Article  Google Scholar 

  21. Morris EP, Kromkamp JC (2003) Influence of temperature on the relationship between oxygen- and fluorescence-based estimates of photosynthetic parameters in marine benthic diatom (Cylindrotheca closterium). Eur J Phycol 38:133–142

    Article  Google Scholar 

  22. van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  23. Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components- calculation of qP and Fv′/Fm′ without measuring F 0 . Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  24. Klughammer C, Schreiber U (2008) Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl Notes 1:27–35

    Google Scholar 

  25. Beardall J, Allen D, Bragg J, Finkel ZV, Flynn KJ, Quigg A, Alwyn T, Rees V, Richardson A, Raven JA (2009) Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol 181:295–309

    Article  CAS  PubMed  Google Scholar 

  26. Denny M (1992) Air and water. The biology and physics of life’s media. Princeton University Press, Princeton

    Google Scholar 

  27. Raven JA (1998) Small is beautiful. The picophytoplankton. Funct Ecol 98:503–513

    Article  Google Scholar 

  28. Costas E, López-Rodas V (2006) Copper sulphate and DCMU-herbicide treatments increase asymmetry between sister cells in the toxic cianobacteria Microcystis aeruginosa: implications for detecting environmental stress. Water Res 40:2447–2451

    Article  CAS  PubMed  Google Scholar 

  29. López Rodas V, Flores-Moya A, Maneiro E, Perdigones N, Marvá F, García ME, Costas E (2006) Resistance to glyphosate in the cyanobacterium Microcystis aeruginosa as result of preselective mutations. Evol Ecol 21:535–547

    Article  Google Scholar 

  30. Agustí S (1991) Allometric scaling of light absorption and scattering by phytoplankton cells. Can J Fish Aquat Sci 48:763–767

    Article  Google Scholar 

  31. Zhu Y, Graham JE, Ludwing M, Xiong W, Alvey RM, Shen G, Bryant DA (2010) Roles of xanthophyll carotenoids in protection against photoinhibition and oxidative stress in the cyanobacterium Synechococcus sp. strain PCC 7002. Arch Biochem Biophys 504:86–99

    Article  CAS  PubMed  Google Scholar 

  32. Jahns P, Holzwarth AR (2012) The role of the xanthophylls cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  CAS  PubMed  Google Scholar 

  33. Kirilovsky D, Kerfeld CA (2012) The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim Biophys Acta 1817:158–166

    Article  CAS  PubMed  Google Scholar 

  34. Joshua S, Mullineaux CW (2004) Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol 135:2112–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mullineaux CW, Allen JF (1990) State 1-State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystems I and II. Photosynth Res 23:297–311

    Article  CAS  PubMed  Google Scholar 

  36. Mullineaux CW (2014) Electron transport and light-harvesting switches in cyanobacteria. Front Plant Sci 5:1–6

    Article  Google Scholar 

  37. Sarcina M, Tobin MJ, Mullineaux CW (2001) Diffusion of phycobilisomes on the thylakoid membranes of cyanobacterium Synechococcus 7942. Effects of phycobilisome size, temperature, and membrane lipid composition. J Biol Chem 276:46830–46834

    Article  CAS  PubMed  Google Scholar 

  38. Bañares-España E, Kromkamp JC, López-Rodas V, Costas E, Flores-Moya A (2013) Photoacclimation of cultured strains of the cyanobacterium Microcystis aeruginosa to high-light and low-light conditions. FEMS Microbiol Ecol 83:700–710

    Article  PubMed  Google Scholar 

  39. Flameling IA, Kromkamp J (1998) Light dependence of quantum yields for PSII charge separation and oxygen evolution in eukaryotic algae. Limnol Oceanogr 43:284–297

    Article  CAS  Google Scholar 

  40. Zorz JK, Allanach JR, Murphy CD, Roodvoets MS, Campbell DA, Cockshutt AM (2015) The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria. Life 5:403–417

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grzymski J, Johnsen G, Sakshaug E (1997) The significance of intracellular self-shading on the Biooptical properties of Brown, Red and Green macroalgae. J Phycol 33:408–414

    Article  Google Scholar 

  42. Huot Y, Babin M (2010) Overview of fluorescence protocols: theory, basic concepts, and practice. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic science: methods and applications, developments in applied phycology, vol 4. Springer, Berlin, pp 31–74

    Chapter  Google Scholar 

  43. Campbell D, Hurry V, Clarke AK, Gustaffson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Simis SGH, Huot Y, Babin M, Seppälä ML (2012) Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria. Photosynth Res 112:13–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Campbell D, Zhou G, Gustafsson P, Öquist G, Clarke K (1995) Electron transport regulates exchange of two forms of Photosystem II D1 protein in the cyanobacterium Synechococcus. EMBO J 14:5457–5466

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Miller AG, Espie GS, Canvin DT (1990) Active transport of inorganic carbon increases the rate of O2 photoreduction by the cyanobacterium Synechococcus UTEX 625. Plant Physiol 88:6–9

    Article  Google Scholar 

  47. Vermaas WFJ, Shen G, Styring S (1994) Electrons generated by photosystem II are utilized by an oxidase in the absence of photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 337:103–108

    Article  CAS  PubMed  Google Scholar 

  48. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basis. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  49. Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching: a response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mullineaux CW (2008) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95:175–182

    Article  CAS  PubMed  Google Scholar 

  51. Bañares-España E, López-Rodas V, Salgado C, Costas E, Flores-Moya A (2006) Interstrain variability in the photosynthetic use of inorganic carbon, exemplified by the pH compensation point, in the cyanobacterium Microcystis aeruginosa. Aquat Bot 85:159–162

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the projects UMA-FEDER 2014–15 (FC14-CGL-08) and Ministerio de Economía y Competitividad (CGL2014-53862-P). The acquisition of the FlowCAM by the University of Málaga was co-financed by the 2008–2011 FEDER programme for Scientific-Technique Infrastructure (UNMA08-1E005). We thank Dr. Douglas Campbell and an anonymous reviewer for their suggestions to improve the manuscript. Dr. Eric C. Henry kindly revised the English style and usage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Bañares-España.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bañares-España, E., del Mar Fernández-Arjona, M., García-Sánchez, M.J. et al. Sulphide Resistance in the Cyanobacterium Microcystis aeruginosa: a Comparative Study of Morphology and Photosynthetic Performance Between the Sulphide-Resistant Mutant and the Wild-Type Strain. Microb Ecol 71, 860–872 (2016). https://doi.org/10.1007/s00248-015-0715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0715-3

Keywords

Navigation