Skip to main content
Log in

Interference Competition Among Household Strains of Pseudomonas

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacterial species exhibit biogeographical patterns like those observed in larger organisms. The distribution of bacterial species is driven by environmental selection through abiotic and biotic factors as well dispersal limitations. We asked whether interference competition, a biotic factor, could explain variability in habitat use by Pseudomonas species in the human home. To answer this question, we screened almost 8000 directional, pairwise interactions between 89 Pseudomonas strains including members of the Pseudomonas aeruginosa (n = 29), Pseudomonas fluorescens (n = 21), and Pseudomonas putida (n = 39) species groups for the presence of killing. This diverse set of Pseudomonas strains includes those isolated from several different habitats within the home environment and includes combinations of strains that were isolated from different spatial scales. The use of this strain set not only allowed us to analyze the commonality and phylogenetic scale of interference competition within the genus Pseudomonas but also allowed us to investigate the influence of spatial scale on this trait. Overall, the probability of killing was found to decrease with increasing phylogenetic distance, making it unlikely that interference competition accounts for previously observed differential habitat use among Pseudomonas species and species groups. Strikingly, conspecific P. aeruginosa killing accounted for the vast majority of the observed killing, and this killing was found to differ across the habitat type and spatial scale of the strains’ isolation. These data suggest that interference competition likely plays a large role in the within-species dynamics of P. aeruginosa but not other household Pseudomonas species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cho JC, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5456. doi:10.1128/aem.66.12.5448-5456.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lindstrom ES, Langenheder S (2012) Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep 4:1–9. doi:10.1111/j.1758-2229.2011.00257.x

    Article  PubMed  Google Scholar 

  3. Martiny JBH, Bohannan BJM, Brown JH et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112. doi:10.1038/nrmicro1341

    Article  CAS  PubMed  Google Scholar 

  4. Papke RT, Ward DM (2004) The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48:293–303. doi:10.1016/j.femsec.2004.03.013

    Article  CAS  PubMed  Google Scholar 

  5. Ramette A, Tiedje JM (2007) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53:197–207. doi:10.1007/s00248-005-5010-2

    Article  PubMed  Google Scholar 

  6. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506. doi:10.1038/nrmicro2795

    CAS  PubMed  Google Scholar 

  7. Crespi BJ (2001) The evolution of social behavior in microorganisms. Trends Ecol Evol 16:178–183. doi:10.1016/s0169-5347(01)02115-2

    Article  PubMed  Google Scholar 

  8. West SA, Diggle SP, Buckling A, Gardner A, Griffins AS (2007) The social lives of microbes. Annu Rev Ecol Evol Syst 38:53–77

  9. Case TJ, Gilpin ME (1974) Interference competition and niche theory. Proc Natl Acad Sci U S A 71:3073–3077. doi:10.1073/pnas.71.8.3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schoener TW (1983) Field Experiments on interspecific competition. Am Nat 122:240–285. doi:10.1086/284133

    Article  Google Scholar 

  11. James R, Lazdunski C, Pattus F (1992) Bacteriocins, microcins and lantibiotics. Springer-Verlag, New York

    Book  Google Scholar 

  12. Torreblanca M, Meseguer I, Ventosa A (1994) Production of halocin is a practically universal feature of archaeal halophilic rods. Lett Appl Microbiol 19:201–205. doi:10.1111/j.1472-765X.1994.tb00943.x

  13. Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA 78:6324–6328. doi:10.1073/pnas.78.10.6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bakkal S, Robinson SM, Ordonez CL, Waltz DA, Riley MA (2010) Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients. Microbiology 156:2058–2067. doi:10.1099/mic.0.036848-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fyfe JA, Harris G, Govan JR (1984) Revised pyocin typing method for Pseudomonas aeruginosa. J Clin Microbiol 20:47–50

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gordon DM, O’Brien CL (2006) Bacteriocin diversity and the frequency of multiple bacterlocin production in Escherichia coli. Microbiology 152:3239–3244. doi:10.1099/mic.0.28690-0

    Article  CAS  PubMed  Google Scholar 

  17. Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510

    Article  CAS  PubMed  Google Scholar 

  18. Smidt ML, Vidaver AK (1982) Bacteriocin production by Pseudomonas syringae PSW-1 in plant-tissue. Can J Microbiol 28:600–604

    Article  CAS  PubMed  Google Scholar 

  19. Fischer S, Godino A, Quesada JM, Cordero P, Jofre E, Mori G, Espinosa-Urgel M (2012) Characterization of a phage-like pyocin from the plant growth-promoting rhizobacterium Pseudomonas fluorescens SF4c. Microbiology 158:1493–1503. doi:10.1099/mic.0.056002-0

    Article  CAS  PubMed  Google Scholar 

  20. Parret AH, De Mot R (2002) Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other gamma-proteobacteria. Trends Microbiol 10:107–112

    Article  CAS  PubMed  Google Scholar 

  21. Kinkel LL, Lindow SE (1993) Invasion and exclusion among coexisting Pseudomonas syringae strains on leaves. Appl Environ Microbiol 59:3447–3454

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marinho PR, Moreira APB, Pellegrino FLPC, Muricy G, Bastos MDCDF, Santos KRND, Giambiagi-deMarval M, Laport MS (2009) Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria. Mem Inst Oswaldo Cruz 104:678–682

    Article  PubMed  Google Scholar 

  23. Lewis IM (1929) Bacterial antagonism with special reference to the effect of Pseudomonas fluorescens on spore forming bacteria of soils. J Bacteriol 17:89–103

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fuller AT, Mellows G, Woolford M, Banks GT, Barrow KD, Chain EB (1971) Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens. Nature 234:416–417

    Article  CAS  PubMed  Google Scholar 

  25. Bharali P, Saikia JP, Ray A, Konwar BK (2013) Rhamnolipid (RL) from Pseudomonas aeruginosa OBP1: a novel chemotaxis and antibacterial agent. Colloids Surf B: Biointerfaces 103:502–509. doi:10.1016/j.colsurfb.2012.10.064

    Article  CAS  PubMed  Google Scholar 

  26. Klaenhammer TR (1988) Bacteriocins of lactic-acid bacteria. Biochimie 70:337–349. doi:10.1016/0300-9084(88)90206-4

    Article  CAS  PubMed  Google Scholar 

  27. Morse SA, Vaughan P, Johnson D, Iglewski BH (1976) Inhibition of Neusseria gonorrhoeae by a bacteriocin from Pseudomonas aeruginosa. Antimicrob Agents Chemother 10:354–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Campagnari AA, Karalus R, Apicella M, Melaugh W, Lesse AJ, Gibson BW (1994) Use of pyocin to select a Haemophilus ducreyi variant defective in lipooligosacchardie biosynthesis. Infect Immun 62:2379–2386

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schoustra SE, Dench J, Dali R, Aaron SD, Kassen R (2012) Antagonistic interactions peak at intermediate genetic distance in clinical and laboratory strains of Pseudomonas aeruginosa. BMC Microbiol 12:40. doi:10.1186/1471-2180-12-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith AW, Hirst PH, Hughes K, Gensberg K, Govan JR (1992) The pyocin Sa receptor of Pseudomonas aeruginosa is associated with ferripyoverdin uptake. J Bacteriol 174:4847–4849

  31. Purdy-Gibson ME, France M, Hundley TC, Eid N, Remold SK (2014) Pseudomonas aeruginosa in CF and non-CF homes is found predominantly in drains. J Cyst Fibros. doi:10.1016/j.jcf.2014.10.008

    PubMed  Google Scholar 

  32. Remold SK, Purdy-Gibson ME, France MT, Hundley TC (2015) Pseudomonas putida and Pseudomonas fluorescens species group recovery from human homes varies seasonally and by environment. PLoS One 10:e0127704

    Article  PubMed  PubMed Central  Google Scholar 

  33. Regnath T, Kreutzberger M, Illing S, Oehme R, Liesenfeld O (2004) Prevalence of Pseudomonas aeruginosa in households of patients with cystic fibrosis. Int J Hyg Environ Health 207:585–588. doi:10.1078/1438-4639-00331

    Article  PubMed  Google Scholar 

  34. Khan NH, Ahsan M, Yoshizawa S, Hosoya S, Yokota A, Kogure K (2008) Multilocus sequence typing and phylogenetic analyses of Pseudomonas aeruginosa isolates from the ocean. Appl Environ Microbiol 74:6194–6205. doi:10.1128/AEM.02322-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shourian M, Noghabi KA, Zahiri HS et al (2009) Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination 246:577–594. doi:10.1016/j.desal.2008.07.015

    Article  CAS  Google Scholar 

  36. Goldberg JB (2000) Pseudomonas: global bacteria. Trends Microbiol 8:55–57. doi:10.1016/s0966-842x(99)01671-6

    Article  CAS  PubMed  Google Scholar 

  37. Dunn RR, Fierer N, Henley JB, Leff JW, Menninger H (2013) Home life: factors structuring the bacterial diversity found within and between homes. PLoS One. doi:10.1371/journal.pone.0064133

    Google Scholar 

  38. Remold SK, Brown CK, Farris JE, Hundley TC, Perpich JA, Purdy ME (2011) Differential habitat us and niche partitioning by Pseudomonas species in human homes. Microb Ecol 62:505–507

    Article  PubMed  Google Scholar 

  39. Ojima M, Toshima Y, Koya E, Ara K, Kawai S, Ueda N (2002) Bacterial contamination of Japanese households and related concern about sanitation. Int J Environ Health Res 12:41–52. doi:10.1080/09603120120110040

    Article  CAS  PubMed  Google Scholar 

  40. Schelstraete P, Van Daele S, De Boeck K, Proesmans M, Lebecque P, Leclercq-Foucart J, Malfroot A, Vaneechoutte M, De Baets F (2008) Pseudomonas aeruginosa in the home environment of newly infected cystic fibrosis patients. Eur Respir J 31:822–829. doi:10.1183/09031936.00088907

    Article  CAS  PubMed  Google Scholar 

  41. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589

    Article  CAS  PubMed  Google Scholar 

  42. Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim Y (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261. doi:10.1099/ijs.0.64915-0

    Article  CAS  PubMed  Google Scholar 

  43. Croce O, Chevenet F, Christen R (2010) A new web server for the rapid identification of microorganisms. J Microbial Biochem Technol 02:084–088. doi:10.4172/1948-5948.1000029

    Article  CAS  Google Scholar 

  44. Spilker T, Coenye T, Vandamme P, LiPuma JJ (2004) PCR-Based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 42:2074–2079. doi:10.1128/jcm.42.5.2074-2079.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Agresti A, Yang MC (1987) An empirical-investigation of some effects of sparseness in contingency-tables. Comput Stat Data Anal 5:9–21. doi:10.1016/0167-9473(87)90003-x

    Article  Google Scholar 

  46. Firth D (1993) Bias reduction of maximum-likelihood-estimates. Biometrika 80:27–38. doi:10.1093/biomet/80.1.27

    Article  Google Scholar 

  47. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Stastical Computing. Vienna, Austria

  48. Lemon J (2006) Plotrix: a package in the red light district of R. R-News 6:8–12

    Google Scholar 

  49. Ricklefs RE, Jenkins DG (2011) Biogeography and ecology: towards the integration of two disciplines. Philos Trans R Soc Lond B 366:2438–2448. doi:10.1098/rstb.2011.0066

  50. Kageyama M (1964) Studies of a pyocin: I. Phyical and chemical properties. J Biochem 55:49–53

  51. Ito S, Kageyama M, Egami F (1970) Isolation and characterization of pyocins from several strains of Pseudomonas aeruginosa. J Gen Appl Microbiol 16:205–214. doi:10.2323/jgam.16.3_205

  52. Baysse C, Meyer JM, Plesiat P, Geoffroy V, Michel-Briand Y, Cornelis P (1999) Uptake of pyocin S3 occurs through the outer membrane ferripyoverdine type II receptor of Pseudomonas aeruginosa. J Bacteriol 181:3849–3851

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gardner A, West SA (2004) Spite and the scale of competition. J Evol Biol 17:1195–1203. doi:10.1111/j.1420-9101.2004.00775.x

    Article  CAS  PubMed  Google Scholar 

  54. Inglis RF, Gardner A, Cornelis P, Buckling A (2009) Spite and virulence in the bacterium Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 106:5703–5707. doi:10.1073/pnas.0810850106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gardner A, West SA, Buckling A (2004) Bacteriocins, spite and virulence. Proc R Soc Lond B 271:1529–1535. doi:10.1098/rspb.2004.2756

    Article  CAS  Google Scholar 

  56. Dahlberg C, Chao L (2003) Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics 165:1641–1649

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Turner PE, Cooper VS, Lenski RE (1998) Tradeoff between horizontal and vertical modes of transmission in bacterial plasmids. Evolution 52:315–329. doi:10.2307/2411070

    Article  Google Scholar 

  58. Berrouane YF, McNutt LA, Buschelman BJ, Rhomberg PR, Sanford MD, Hollis RJ, Pfaller MA, Herwaldt LA (2000) Outbreak of severe Pseudomonas aeruginosa infections caused by a contaminated drain in a whirlpool bathtub. Clin Infect Dis 31:1331–1337. doi:10.1086/317501

    Article  CAS  PubMed  Google Scholar 

  59. Matz C, Moreno AM, Alhede M, Manefield M, Hauser AR, Givskov M, Kjelleberg S (2008) Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME J 2:843–852. doi:10.1038/ismej.2008.47

  60. Hoiby N, Johansen HK, Moser C, Song Z, Ciofu O, Kharazmi A (2001) Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3:23–35. doi:10.1016/s1286-4579(00)01349-6

    Article  CAS  PubMed  Google Scholar 

  61. Bucci V, Nadell CD, Xavier JB (2011) The evolution of bacteriocin production in bacterial biofilms. Am Nat 178:E162–E173. doi:10.1086/662668

    Article  PubMed  Google Scholar 

  62. Gardner A, West SA, Wild G (2011) The genetical theory of kin selection. J Evol Biol 24:1020–1043. doi:10.1111/j.1420-9101.2011.02236.x

    Article  CAS  PubMed  Google Scholar 

  63. Potera C (1996) Biofilms invade microbiology. Science 273:1795–1797. doi:10.1126/science.273.5283.1795

    Article  CAS  PubMed  Google Scholar 

  64. McBain AJ, Bartolo RG, Catrenich CE, Charbonneau D, Ledder RG, Rickard AH, Symmons SA, Gilbert P (2003) Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Appl Environ Microbiol 69:177–185. doi:10.1128/aem.69.1.177-185.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Singh PK, Schaefer AL, Parsek MB, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764

Download references

Acknowledgments

We would like to thank Thomas Hundley for insightful discussions and valuable assistance as well as the many undergraduate and graduate students that worked to collect and identify the strains used here. We also thank two anonymous reviewers for their helpful suggestions. This work was supported by a National Science Foundation grant (DEB-0950361) and a National Science Foundation Research Experience for Undergraduates Supplement (DEB-1111122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. France.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

France, M.T., Remold, S.K. Interference Competition Among Household Strains of Pseudomonas . Microb Ecol 72, 821–830 (2016). https://doi.org/10.1007/s00248-015-0652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0652-1

Keywords

Navigation