Skip to main content
Log in

Low Temperature Reveals Genetic Variability Against Male-Killing Spiroplasma in Drosophila melanogaster Natural Populations

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Spiroplasma endosymbionts are maternally inherited microorganisms which infect many arthropod species. In some Drosophila species, it acts as a reproductive manipulator, spreading in populations by killing the sons of infected mothers. Distinct Drosophila melanogaster populations from Brazil exhibit variable male-killing Spiroplasma prevalences. In this study, we investigated the presence of variability for the male-killing phenotype among Drosophila and/or Spiroplasma strains and verified if it correlates with the endosymbiont prevalence in natural populations. For that, we analyzed the male-killing expression when Spiroplasma strains from different populations were transferred to a standard D. melanogaster line (Canton-S) and when a common Spiroplasma strain was transferred to different wild-caught D. melanogaster lines, both at optimal and challenging temperatures for the bacteria. No variation was observed in the male-killing phenotype induced by different Spiroplasma strains. No phenotypic variability among fly lines was detected at optimal temperature (23 °C), as well. Conversely, significant variation in the male-killing expression was revealed among D. melanogaster lines at 18.5 °C, probably caused by imperfect transmission of the endosymbiont. Distinct lines differed in their average sex ratios as well as in the pattern of male-killing expression as the infected females aged. Greater variation occurred among lines from one locality, although there was no clear correlation between the male-killing intensity and the endosymbiont prevalence in each population. Imperfect transmission or male killing may also occur in the field, thus helping to explain the low or intermediate prevalences reported in nature. We discuss the implications of our results for the dynamics of male-killing Spiroplasma in natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anbutsu H, Fukatsu T (2003) Population dynamics of male-killing and non-male-killing spiroplasmas in Drosophila melanogaster. Appl Environ Microbiol 69:1428–1434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Anbutsu H, Goto S, Fukatsu T (2008) High and low temperatures differently affect infection density and vertical transmission of male-killing Spiroplasma symbionts in Drosophila hosts. Appl Environ Microbiol 74:6053–6059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cavalcanti AGL, Falcão DN, Castro LE (1957) “Sex-ratio” in Drosophila prosaltans—a character due to interaction between nuclear genes and cytoplasmic factors. Am Nat 91:327–329

    Article  Google Scholar 

  4. Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstadter J, Hurst GD (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:27

    Article  PubMed Central  PubMed  Google Scholar 

  5. Engelstädter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 40:127–149

    Article  Google Scholar 

  6. Haselkorn TS (2010) The Spiroplasma heritable bacterial endosymbiont of Drosophila. Fly 4:80–87

    Article  CAS  PubMed  Google Scholar 

  7. Hoffmann AA, Clancy DJ, Merton E (1994) Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics 136:993–999

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Hurst GD, Jiggins FM (2000) Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg Infect Dis 6:329–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hurst GD, Johnson AP, Schulenburg JH, Fuyama Y (2000) Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with a threshold bacterial density. Genetics 156:699–709

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Hurst GDD, Majerus MEN (1993) Why do maternally inherited microorganisms kill males? Heredity 71:81–95

    Article  Google Scholar 

  11. Hutchence KJ, Pade R, Swift HL, Bennett D, Hurst GDD (2012) Phenotype and transmission efficiency of artificial and natural male-killing Spiroplasma infections in Drosophila melanogaster. J Inverteb Pathol 109:243–247

    Article  Google Scholar 

  12. Jaenike J (2007) Fighting back against male killers. Trends Ecol Evolut 22:167–169

    Article  Google Scholar 

  13. Jaenike J (2007) Spontaneous emergence of a new Wolbachia phenotype. Evolution 61:2244–2252

    Article  PubMed  Google Scholar 

  14. Jaenike J, Unckless RL, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a defensive symbiont in Drosophila. Science 329:212–215

    Article  CAS  PubMed  Google Scholar 

  15. Kageyama D, Anbutsu H, Shimada M, Fukatsu T (2009) Effects of host genotype against the expression of Spiroplasma-induced male killing in Drosophila melanogaster. Heredity 102:475–482

    Article  CAS  PubMed  Google Scholar 

  16. Martins A, Ventura IM, Klaczko LB (2010) Spiroplasma infection in Drosophila melanogaster: What is the advantage of killing males? J Invertebr Pathol 105:145–150

    Article  CAS  PubMed  Google Scholar 

  17. Mateos M, Castrezana SJ, Nankivell BJ, Estes AM, Markow TA, Moran NA (2006) Heritable endosymbionts of Drosophila. Genetics 174:363–376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. McGraw EA, Merritt DJ, Droller JN, O'Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. PNAS 99:2918–2923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Montenegro H, Klaczko LB (2004) Low temperature cure of a male killing agent in Drosophila melanogaster. J Invertebr Pathol 86:50–51

    Article  CAS  PubMed  Google Scholar 

  20. Montenegro H, Petherwick AS, Hurst GDD, Klaczko LB (2006) Fitness effects of Wolbachia and Spiroplasma in Drosophila melanogaster. Genetica 127:207–215

    Article  CAS  PubMed  Google Scholar 

  21. Montenegro H, Solferini VN, Klaczko LB, Hurst GDD (2005) Male-killing Spiroplasma naturally infecting Drosophila melanogaster. Insect Mol Biol 14:281–287

    Article  CAS  PubMed  Google Scholar 

  22. Montenegro H, Souza WN, da Silva LD, Klaczko LB (2000) Male-killing selfish cytoplasmic element causes sex-ratio distortion in Drosophila melanogaster. Heredity 85:465–470

    Article  PubMed  Google Scholar 

  23. Osaka R, Nomura M, Watada M, Kageyama D (2008) Negative effects of low temperatures on the vertical transmission and infection density of a Spiroplasma endosymbiont in Drosophila hydei. Curr Microbiol 57:335–339

    Article  CAS  PubMed  Google Scholar 

  24. Poinsot D, Bourtzis K, Markakis G, Savakis C, Mercot H (1998) Injection of a Wolbachia from Drosophila melanogaster into D. simulans: host effect and cytoplasmic incompatibility relationships. Genetics 150:227–237

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Pool JE, Wong A, Aquadro CF (2006) Finding of male-killing Spiroplasma infecting Drosophila melanogaster in Africa implies transatlantic migration of this endosymbiont. Heredity 97:27–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Silva NO, Guenther LL, Xie J, Mateos M (2012) Infection densities of three Spiroplasma strains in the host Drosophila melanogaster. Symbiosis 57:83–93

    Article  Google Scholar 

  27. Tinsley MC, Majerus ME (2007) Small steps or giant leaps for male-killers? Phylogenetic constraints to male-killer host shifts. BMC Evol Biol 7:238

    Google Scholar 

  28. Unckless RL, Jaenike J (2012) Maintenance of a male-killing Wolbachia in Drosophila innubila by male-killing dependent and male-killing independent mechanisms. Evolution 66:678–689

    Article  PubMed  Google Scholar 

  29. Vautrin E, Vavre F (2009) Interactions between vertically transmitted symbionts: cooperation or conflict? Trends Microbiol 17:95–99

    Article  CAS  PubMed  Google Scholar 

  30. Veneti Z, Bentley JK, Koana T, Braig HR, Hurst GDD (2005) A functional dosage compensation complex required for male killing in Drosophila. Science 307:4

    Article  Google Scholar 

  31. Veneti Z, Zabalou S, Papafotiou G, Paraskevopoulos C, Pattas S, Livadaras I, Markakis G, Herren JK, Jaenike J, Bourtzis K (2012) Loss of reproductive parasitism following transfer of male-killing Wolbachia to Drosophila melanogaster and Drosophila simulans. Heredity 109:306–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ventura IM, Martins AB, Lyra ML, Andrade CA, Carvalho KA, Klaczko LB (2012) Spiroplasma in Drosophila melanogaster populations: prevalence, male-killing, molecular identification, and no association with Wolbachia. Microb Ecol 64:794–801

    Article  PubMed  Google Scholar 

  33. Watts T, Haselkorn TS, Moran NA, Markow TA (2009) Variable incidence of Spiroplasma infections in natural populations of Drosophila species. PLoS One 4:e5703

    Article  PubMed Central  PubMed  Google Scholar 

  34. Xie J, Vilchez I, Mateos M (2010) Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS One 5:e12149

    Article  PubMed Central  PubMed  Google Scholar 

  35. Yamada MA, Watanabe TK, Koana T (1985) Absence of resistance genes against male-killing action of the SRO in Drosophila melanogaster. Jpn J Genet 60:93–102

    Article  Google Scholar 

  36. Zar JH (1999) Biostatistical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

  37. Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40 % of terrestrial arthropods species are infected. PLoS One 7:e38544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ayana Martins and Lyes Assis Garcia for collections in Salvador and Rio de Janeiro, Klélia Carvalho and Claudete Couto for their technical support, Horácio Montenegro for statistical help, Espaço da Escrita (Unicamp) for reviewing the English version of the manuscript, John Pool for providing lines from Uganda, and anonymous reviewers for their suggestions. This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and Fundo de Apoio ao Ensino, à Pesquisa e à Extensão—Unicamp (FAEPEX).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Bernard Klaczko.

Additional information

Data Archiving

Data are available in the Dryad Digital Repository: doi:10.5061/dryad.qh113.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Average proprotions of females and standard errors for each strain, during the days 3–10. (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, I.M., Costa, T. & Klaczko, L.B. Low Temperature Reveals Genetic Variability Against Male-Killing Spiroplasma in Drosophila melanogaster Natural Populations. Microb Ecol 67, 229–235 (2014). https://doi.org/10.1007/s00248-013-0295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0295-z

Keywords

Navigation