Skip to main content
Log in

Environmental Controls on Microbial Abundance and Activity on the Greenland Ice Sheet: A Multivariate Analysis Approach

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbes in supraglacial ecosystems have been proposed to be significant contributors to regional and possibly global carbon cycling, and quantifying the biogeochemical cycling of carbon in glacial ecosystems is of great significance for global carbon flow estimations. Here we present data on microbial abundance and productivity, collected along a transect across the ablation zone of the Greenland ice sheet (GrIS) in summer 2010. We analyse the relationships between the physical, chemical and biological variables using multivariate statistical analysis. Concentrations of debris-bound nutrients increased with distance from the ice sheet margin, as did both cell numbers and activity rates before reaching a peak (photosynthesis) or a plateau (respiration, abundance) between 10 and 20 km from the margin. The results of productivity measurements suggest an overall net autotrophy on the GrIS and support the proposed role of ice sheet ecosystems in carbon cycling as regional sinks of CO2 and places of production of organic matter that can be a potential source of nutrients for downstream ecosystems. Principal component analysis based on chemical and biological data revealed three clusters of sites, corresponding to three ‘glacier ecological zones’, confirmed by a redundancy analysis (RDA) using physical data as predictors. RDA using data from the largest ‘bare ice zone’ showed that glacier surface slope, a proxy for melt water flow, accounted for most of the variation in the data. Variation in the chemical data was fully explainable by the determined physical variables. Abundance of phototrophic microbes and their proportion in the community were identified as significant controls of the carbon cycling-related microbial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B (2009) High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biol 15:955–960

    Article  Google Scholar 

  2. Bøggild CE, Brandt RE, Brown KJ, Warren SG (2010) The ablation zone in northeast Greenland: ice types, albedos and impurities. J Glaciol 56:101–113

    Article  Google Scholar 

  3. Bossio DA, Girvan MS, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow KM, Ball AS, Pretty JN, Osborn AM (2005) Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microb Ecol 49:50–62

    Article  PubMed  CAS  Google Scholar 

  4. Cook J, Hodson A, Telling J, Anesio A, Irvine-Fynn T, Bellas C (2010) The mass–area relationship within cryoconite holes and its implications for primary production. Ann Glaciol 51(56):106–110

    Article  CAS  Google Scholar 

  5. Edwards A, Anesio AM, Rassner SM, Sattler B, Hubbard BP, Perkins WT, Young M, Griffith GW (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160

    Article  PubMed  Google Scholar 

  6. Foreman CM, Sattler B, Mikucki JA, Porazinska DL, Priscu JC (2007) Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J Geophys Res 112:G04S32

    Article  Google Scholar 

  7. Hanna E, Huybrechts P, Janssens I, Cappelen J, Steffen K, Stephens A (2005) Runoff and mass balance of the Greenland ice sheet: 1958–2003. J Geophys Res 110:D13108

    Article  Google Scholar 

  8. Hodson A, Anesio AM, Ng F, Watson R, Quirk J, Irvine-Fynn T, Dye A, Clark C, McCloy P, Kohler J, Sattler B (2007) A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J Geophys Res 112:G04S36

    Article  Google Scholar 

  9. Hodson A, Cameron K, Bøggild C, Irvine-Fynn T, Langford H, Pearce D, Banwart S (2010) The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. J Glaciol 56:349–361

    Article  CAS  Google Scholar 

  10. Hodson A, Bøggild C, Hanna E, Huybrechts P, Langford H, Cameron K, Houldsworth A (2010) The cryoconite ecosystem on the Greenland ice sheet. Ann Glaciol 51(56):123–129

    Article  CAS  Google Scholar 

  11. Hood E, Fellman J, Spencer RGM, Hernes PJ, Edwards R, D’Amore D, Scott D (2009) Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462:1044–1047

    Article  PubMed  CAS  Google Scholar 

  12. Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50:396–407

    Article  PubMed  Google Scholar 

  13. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam, 853

    Google Scholar 

  14. Massieux B, Boivin MEY, van den Ende FP, Langenskiöld J, Marvan P, Barranguet C, Admiraal W, Laanbroek HJ, Zwart G (2004) Analysis of structural and physiological profiles to assess the effects of Cu on biofilm microbial communities. Appl Environ Microbiol 70:4512–4521

    Article  PubMed  CAS  Google Scholar 

  15. Mueller DR, Pollard WH (2004) Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol 27:66–74

    Article  Google Scholar 

  16. Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975

    Article  PubMed  CAS  Google Scholar 

  17. Ramette A (2007) Multivariate analysis in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  PubMed  CAS  Google Scholar 

  18. Ramette A, Tiedje JM (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci USA 104:2761–2766

    Article  PubMed  CAS  Google Scholar 

  19. Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596

    Google Scholar 

  20. Säwström C, Laybourn-Parry J, Granéli W, Anesio AM (2007) Heterotrophic bacterial and viral dynamics in Arctic freshwaters: results from a field study and nutrient-temperature manipulation experiments. Polar Biol 30:1407–1415

    Article  Google Scholar 

  21. Stibal M, Šabacká M, Kaštovská K (2006) Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654

    Article  PubMed  Google Scholar 

  22. Stibal M, Tranter M (2007) Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard. J Geophys Res 112:G04S33

    Article  Google Scholar 

  23. Stibal M, Tranter M, Benning LG, Řehák J (2008) Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ Microbiol 10:2172–2178

    Article  PubMed  CAS  Google Scholar 

  24. Stibal M, Anesio AM, Blues CJD, Tranter M (2009) Phosphatase activity and organic phosphorus turnover on a high Arctic glacier. Biogeosciences 6:913–922

    Article  CAS  Google Scholar 

  25. Stibal M, Lawson EC, Lis GP, Mak KM, Wadham JL, Anesio AM (2010) Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet. Ann Glaciol 51(56):1–8

    Article  CAS  Google Scholar 

  26. Takeuchi N (2001) The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska range). Hydrol Process 15:3447–3459

    Article  Google Scholar 

  27. Tedesco M, Fettweis X, van den Broeke MR, van de Wal RSW, Smeets CJPP, van de Berg WJ, Serreze MC, Box JE (2011) The role of albedo and accumulation in the 2010 melting record in Greenland. Environ Res Lett 6:014005

    Article  Google Scholar 

  28. Telling J, Anesio AM, Hawkings J, Tranter M, Wadham JL, Hodson AJ, Irvine-Fynn T, Yallop ML (2010) Measuring rates of gross photosynthesis and net community production in cryoconite holes: a comparison of field methods. Ann Glaciol 51(56):135–144

    Article  Google Scholar 

  29. Telling J, Anesio AM, Tranter M, Irvine-Fynn T, Hodson A, Butler C, Wadham J (2011) Nitrogen fixation on Arctic glaciers, Svalbard. J Geophys Res. doi:10.1029/2010JG001632

  30. ter Braak CJF (1987) Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Centre for Agricultural Publishing and Documentation, Wageningen, pp 91–169

    Google Scholar 

  31. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, p 550

    Google Scholar 

  32. Uetake J, Naganuma T, Hebsgaard MB, Kanda H, Kohshima S (2010) Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci 4:71–80

    Article  Google Scholar 

  33. Wientjes IGM, van de Wal RSW, Reichart GJ, Sluijs A, Oerlemans J (2011) Dust from the dark region in the western ablation zone of the Greenland ice sheet. Cryosphere 5:589–601

    Article  Google Scholar 

  34. Yoshimura Y, Kohshima S, Ohtani S (1997) A community of snow algae on a Himalayan glacier: change of algal biomass and community structure with altitude. Arct Alp Res 29:126–137

    Article  Google Scholar 

  35. Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Marie Curie Reintegration Grant 249171 (ProGrIS) to MS and by the UK Natural Environment Research Council (NERC) grant NE/G00496X/1 to AMA. People at Camp Doom and Camp Famine are thanked for field assistance. Two anonymous reviewers are thanked for their insightful comments and criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Stibal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stibal, M., Telling, J., Cook, J. et al. Environmental Controls on Microbial Abundance and Activity on the Greenland Ice Sheet: A Multivariate Analysis Approach. Microb Ecol 63, 74–84 (2012). https://doi.org/10.1007/s00248-011-9935-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9935-3

Keywords

Navigation