Skip to main content
Log in

A Multiphasic Approach for the Identification of Endophytic Bacterial in Strawberry Fruit and their Potential for Plant Growth Promotion

  • Physiology and Biotechnology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

This study used a multiphasic approach, characterized by the simultaneous use of culture-dependent and culture-independent methods, to investigate endophytic bacterial communities in strawberry (Fragaria ananassa) fruit. A total of 92 bacterial endophytes were isolated and initially grouped by their repetitive extragenic palindromic (rep)-PCR banding pattern and biochemical features. Phylogenetic analysis of the 16S rRNA gene sequences of 45 representatives showed that the isolates belonged to the species Bacillus subtilis (eight isolates), Bacillus sp. (seven isolates), Enterobacter sp. (seven isolates), Enterobacter ludwigii (six isolates), Lactobacillus plantarum (six isolates), Pseudomonas sp. (five isolates), Pantoea punctata (three isolates), and Curtobacterium citreum (three isolates). Nucleic acids were extracted from the strawberry fruit and subjected to 16S rRNA gene directed polymerase chain reaction denaturing gradient gel electrophoresis (16S rRNA PCR-DGGE). The species B. subtilis, Enterobacter sp., and Pseudomonas sp. were detected both by isolation and DGGE. The DGGE fingerprints of total bacterial DNA did not exhibit bands corresponding to several of the representative species isolated in the extinction dilution (L. plantarum, C. citreum, and P. punctata). In contrast, bands in the DGGE profile that were identified as relatives of Arthrobacter sp. and one uncultivable Erythrobacter sp. were not recovered by cultivation techniques. After isolation, the nitrogen fixation ability and the in vitro production of indole-3-acetic acid (IAA) equivalents and siderophores were evaluated. A high percentage of isolates were found to possess the ability to produce siderophores and IAA equivalents; however, only a few isolates belonging to the genera Pseudomonas and Enterobacter showed the ability to fix nitrogen. Plant growth promotion was evaluated under greenhouse conditions and revealed the ability of the Bacillus strains to enhance the number of leaves, shoot length, root dry weight, and shoot dry weight. The activity of the bacterial isolate identified as B. subtilis NA-108 exerted the greatest influence on strawberry growth and showed a 42.8% increase in number of leaves, 15.26% for high shoot, 43.5% increase in root dry weight, and a 77% increase in shoot dry weight when compared with untreated controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Andreote FD, Carneiro RT, Salles JF, Marcon J, Labate CA, Azevedo JL, Araújo WL (2009) Culture-independent assessment of Alphaproteobacteria related to order Rhizobiales and the diversity of cultivated Methylobacterium in the rhizosphere and rhizoplane of transgenic eucalyptus. Microb Ecol 57:82–93

    Article  PubMed  Google Scholar 

  2. Andreote FD, Rossetto PB, Mendes R, Avila LA, Labate CA, Pizzirani-Kleiner AA, Azevedo JL, Araújo WL (2009) Bacterial community in the rhizosphere and rhizoplane of wild type and transgenic eucalyptus. World J Microbiol Biotechnol 25:1065–1073

    Article  Google Scholar 

  3. Araújo WL, Marcon J, Maccheroni W Jr, van Elsas JD, van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  PubMed  Google Scholar 

  4. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  PubMed  CAS  Google Scholar 

  5. Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    PubMed  CAS  Google Scholar 

  6. Dias ACF, Costa FEC, Andreote FD, Lacava PT, Teixeira MA, Assumpção LC, Araújo WL, Azevedo JL, Melo IS (2009) Isolation of micropropagated strawberry endophytic bactéria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25:189–195

    Article  CAS  Google Scholar 

  7. Esitken A, Yildiz S, Ercisli S, Donmez MF, Turan M, Gunes A (2007) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Appl Microbiol Biotechnol 76:1145–1152

    Article  Google Scholar 

  8. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  PubMed  CAS  Google Scholar 

  9. Funk G, Hutson RA, Bernard KA, Pfyffer GE, Wauters G, Collins MD (2006) Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J Clin Microbiol 34:2356–2363

    Google Scholar 

  10. Fürnkranz M, Müller H, Berg G (2009) Characterization of plant growth promoting bacteria from crops in Bolivia. J Plant Dis Protec 116(4):149–155

    Google Scholar 

  11. Garbeva P, Overbeek LSV, Van Vuurde JWL, Van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41:369–383

    PubMed  CAS  Google Scholar 

  12. Garbeva P, Postma J, vanVeen JA, vanElsas JD (2006) Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environ Microbiol 8:233–246

    Article  PubMed  CAS  Google Scholar 

  13. Gevers D, Huys G, Swigs J (2001) Applicability of rep-PCR fingerprinting for identification of species. FEMS Microbiol Lett 205:31–36

    Article  PubMed  CAS  Google Scholar 

  14. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  15. Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195

    Article  PubMed  CAS  Google Scholar 

  16. Hallman J, Quadt-Hallman A, Rodriuez-Kabana R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937

    Article  Google Scholar 

  17. Holt JG, Krieg NR, Sneath PHA, Stanley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore, p 787

    Google Scholar 

  18. Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed  CAS  Google Scholar 

  19. Jayne-Williams DJ (1976) The application of miniaturized methods for the characterization of various organisms isolated from the animal gut. J Appl Bacteriol 40:189–200

    Article  PubMed  CAS  Google Scholar 

  20. Kloepper JW (1991) Development of in vivo assays for prescreening antagonists of Rhizoctonia solani on cotton. Phythopathol 81:1006–1013

    Article  Google Scholar 

  21. Krimm U, Abanda-Nkpwatt D, Schwab W, Schreiber L (2005) Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): identification of bacterial isolates and analysis of their interaction with leaf surfaces. FEMS Microbiol Ecol 53:483–492

    Article  PubMed  CAS  Google Scholar 

  22. Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AL, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 12:1244–1251

    Article  Google Scholar 

  23. Leach AW, Mumford JD (2008) Pesticide environmental accounting: a method for assessing the external costs of individual pesticide applications. Environ Pollut 151:139–147

    Article  PubMed  CAS  Google Scholar 

  24. Li C-H, Zhao M-W, Tang C-M, Li S-P (2010) Population dynamics and identification of endophytic bacteria antagonistic toward plant-pathogenic fungi in cotton root. Microb Ecol 59:344–356

    Article  PubMed  CAS  Google Scholar 

  25. Liu Z, Sinclair J (1993) Colonization of soybean roots by Bacillus megaterium B153-2-2. Soil Biol Biochem 25:849–855

    Article  Google Scholar 

  26. Loaces I, Ferrando L, Scavino AF (2010) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618

    Article  PubMed  Google Scholar 

  27. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  28. Magalhães K, Pereira MA, Nicolau A, Dragone G, Domingues L, Teixeira JA, de Almeida Silva JB, Schwan RF (2010) Production of fermented cheese whey-based beverage using kefir grains as starter culture: Evaluation of morphological and microbial variations. Biores Tech 101:8843–8850

    Article  Google Scholar 

  29. Magnusson JK, Strom S, Roos J, Sjogren J, Schnurer J (2003) Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol Lett 219:129–135

    Article  PubMed  CAS  Google Scholar 

  30. Monteiro JM, Vollú RE, Coelho MRR, Alviano CS, Blank AF, Seldin L (2009) Comparison of the bacterial community and characterization of plant growth-promoting rhizobacteria from different genotypes of Chrysopogon zizanioides (L.) Roberty (Vetiver) rhizospheres. J Microbiol 4:363–370

    Article  Google Scholar 

  31. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electroforesis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  32. Nadkarni MA, Martin FE, Hunter N, Jacques NA (2009) Methods for optimizing DNA extraction before quantifying oral bacterial numbers by real-time PCR. FEMS Microbiol Lett 296:45–51

    Article  PubMed  CAS  Google Scholar 

  33. Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, Andersson TS, Holzapfel WH (2007) The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and cultureindependent methods. Int J Food Microbiol 114:168–186

    Article  PubMed  CAS  Google Scholar 

  34. Noel TC, Cheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant-growth rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283

    Article  PubMed  CAS  Google Scholar 

  35. Ovreås L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373

    PubMed  Google Scholar 

  36. Pedraza RO, Motok J, Salazar SM, Ragout AL, Mentel MI, Tortora ML, Guerrero-Molina MF, Winik BC, Díaz-Ricci JC (2009) Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World J Microbiol Biotechnol 26:265–272

    Article  Google Scholar 

  37. Pereira GVM, Ramos CL, Galvão C, Dias ES, Schwan RF (2010) Use of specific PCR primers to identify three important industrial species of Saccharomyces genus: Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces pastorianus. Lett Appl Microbiol 5:131–137

    Google Scholar 

  38. Roesch LFW, Quadros PD, Camargo FAO, Triplett EW (2007) Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World J Microbiol Biotechnol 23:1377–1383

    Article  CAS  Google Scholar 

  39. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microb Interact 19:827–837

    Article  CAS  Google Scholar 

  40. Sagaram US, De Angelis KM, Trivedi P, Andersen GL, Lu SE, Wang N (2009) Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip arrays and 16S rRNA gene clone library sequencing. Appl Environ Microbiol 75:1566–1574

    Article  PubMed  CAS  Google Scholar 

  41. Scheirlinck I, der Meulen RV, Vancanneyt M, De Vuyst L, Vandamme P, Huys G (2008) Taxonomic structure and stability of the bacterial community in Belgian sourdough ecosystems as assessed by culture and population fingerprinting. Appl Environ Microbiol 74:2414–2423

    Article  PubMed  CAS  Google Scholar 

  42. Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  PubMed  CAS  Google Scholar 

  43. Shrestha A, Toyota K, Okazaki M, Suga Y, Quevedo MA, Loreto A, Mariscal AA (2007) Enhancement of nitrogen-fixing activity of Enterobacteriaceae strains isolated from Sago Palm (Metroxylon sagu) by microbial interaction with non-nitrogen fixers. Microbes Environ 22:59–70

    Article  Google Scholar 

  44. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  PubMed  CAS  Google Scholar 

  45. Torriani S, Felis G, Dellaglio F (2001) Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl Environ Microbiol 67:3450–3454

    Article  PubMed  CAS  Google Scholar 

  46. Trivedi P, Duan Y, Wang N (2010) Huanglongbing, a systemic disease, restructures the bacterial community associated with citrus roots. Appl Environ Microbiol 76:3427–3436

    Article  PubMed  CAS  Google Scholar 

  47. Trivedi P, Spann T, Wang N (2011) Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb Ecol. doi:10.1007/s00248-011-9822-y

  48. Tulipani S, Mezzetti B, Battino M (2009) Impact of strawberries on human health: insight into marginally discussed bioactive compounds for the Mediterranean diet. Publ health nutrit 12:1656–1662

    Article  Google Scholar 

  49. Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180

    Article  PubMed  CAS  Google Scholar 

  50. Wang X, Haruta S, Wang P, Ishii M, Igarashi Y, Cui Z (2006) Diversity stable enrichment culture which is useful for silage inoculant and its succession in alfalfa silage. Fed Euro Microbiol Soc 57:106–115

    Article  Google Scholar 

  51. Weyant RS, Moss CW, Weaver RE, Frollis DG, Jordan JG, Cook EC, Daneshvar MI (1995) Identification of unusual pathogenic G negative aerobic and anaerobic bacteria. The Williams and Wilkins Company, Baltimore, pp 318–341

    Google Scholar 

  52. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  PubMed  CAS  Google Scholar 

  53. Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru C, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  PubMed  CAS  Google Scholar 

  54. Zoetendal EG, Akkermans ADL, de Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Horto Florestal e Plantas Medicinais (UFLA) for providing the strawberry samples for use in this study and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à pesquisa do Estado de Minas Gerais (FAPEMIG) for financial support and Dr. Disney Ribeiro Dias for collaboration in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane Freitas Schwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Melo Pereira, G.V., Magalhães, K.T., Lorenzetii, E.R. et al. A Multiphasic Approach for the Identification of Endophytic Bacterial in Strawberry Fruit and their Potential for Plant Growth Promotion. Microb Ecol 63, 405–417 (2012). https://doi.org/10.1007/s00248-011-9919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9919-3

Keywords

Navigation