Skip to main content
Log in

Realized Fungal Diversity Increases Functional Stability of Leaf Litter Decomposition Under Zinc Stress

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Freshwaters include some of the most impaired systems on Earth with high rates of species loss, underscoring the significance of investigating whether ecosystems with fewer species will be able to maintain ecological processes. The environmental context is expected to modulate the effects of declining diversity. We conducted microcosm experiments manipulating fungal inoculum diversity and zinc concentration to test the hypothesis that fungal diversity determines the susceptibility of leaf litter decomposition to Zn stress. Realized fungal diversity was estimated by counting released spores and by measuring species-specific biomasses via denaturing gradient gel electrophoresis. In the absence of Zn, positive diversity effects were found for leaf mass loss and fungal biomass through complementary interactions and due to the presence of key species. The variability of leaf decomposition decreased with increasing species number (portfolio effect), particularly under Zn stress. Results suggest that the effect of species loss on ecosystem stability may be exacerbated at higher stress levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abel TH, Bärlocher F (1984) Effects of cadmium on aquatic hyphomycetes. Appl Environ Microbiol 48:245–251

    CAS  PubMed  Google Scholar 

  2. Arsuffi TL, Suberkropp K (1985) Selective feeding by stream caddishfly (Thrichoptera) detritivores on leaves with fungal-colonized patterns. Oikos 45:50–58

    Article  Google Scholar 

  3. Baldy V, Chauvet E, Charcosset J-Y, Gessner MO (2002) Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquat Microb Ecol 28:25–36

    Article  Google Scholar 

  4. Bärlocher F (2005) Freshwater fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem. CRC, Boca Raton, pp 39–59

    Google Scholar 

  5. Bärlocher F, Corkum M (2003) Nutrient enrichment overwhelms diversity effects in leaf decomposition by stream fungi. Oikos 101:247–252

    Article  Google Scholar 

  6. Bärlocher F, Kendrick B (1973) Fungi and food preferences of Gammarus pseudolimnaeus. Arch Hydrobiol 72:501–516

    Google Scholar 

  7. Bärlocher F, Schweizer M (1983) Effects of leaf size and decay rate on colonization by aquatic hyphomycetes. Oikos 41:205–210

    Article  Google Scholar 

  8. Cardinale BJ, Nelson K, Palmer MA (2000) Linking species diversity to the functioning ecosystems: on the importance of environmental context. Oikos 91:175–183

    Article  Google Scholar 

  9. Chauvet E, Suberkropp K (1998) Temperature and sporulation of aquatic hyphomycetes. Appl Environ Microbiol 64:1522–1525

    CAS  PubMed  Google Scholar 

  10. Covich AP, Austen MC, Bärlocher F, Chauvet E, Cardinale BJ, Biles CL, Inchausti P, Dangles O, Solan M, Gessner MO, Statzner B, Moss B (2004) The role of biodiversity in the freshwater and marine benthic ecosystems. BioScience 54:767–775

    Article  Google Scholar 

  11. Dang CK, Chauvet E, Gessner MO (2005) Magnitude and variability of process rates in fungal diversity–litter decomposition relationships. Ecol Lett 8:1129–1137

    Article  Google Scholar 

  12. Doak DF, Bigger D, Harding EK, Marvier MA, O’Malley RE, Thomson D (1998) The statistical inevitability of stability–diversity relationships in community ecology. Am Nat 151:264–276

    Article  CAS  PubMed  Google Scholar 

  13. Duarte S, Pascoal C, Alves A, Correia A, Cássio F (2008) Copper and zinc mixtures induce shifts in microbial communities and reduce leaf litter decomposition in streams. Freshwat Biol 53:91–101

    CAS  Google Scholar 

  14. Duarte S, Pascoal C, Cássio F (2004) Effects of zinc on leaf decomposition in streams: studies in microcosms. Microb Ecol 48:366–374

    Article  CAS  PubMed  Google Scholar 

  15. Duarte S, Pascoal C, Cássio F (2008) High diversity of fungi may mitigate the impact of pollution on plant litter decomposition in streams. Microb Ecol 66:688–695

    Article  Google Scholar 

  16. Duarte S, Pascoal C, Cássio F, Bärlocher F (2006) Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms. Oecologia 147:658–666

    Article  PubMed  Google Scholar 

  17. Fox JW (2005) Interpreting the ‘selection effect’ of biodiversity on ecosystem function. Ecol Lett 8:846–856

    Article  Google Scholar 

  18. Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507

    CAS  PubMed  Google Scholar 

  19. Giller PS, Hillebrand H, Berninger U-G, Gessner MO, Hawkins S, Inchausti P, Inglis C, Leslie H, Malmqvist B, Monaghan MT, Morin PJ, O'Mullan G (2004) Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos 104:423–436

    Article  Google Scholar 

  20. Guimarães-Soares L, Pascoal C, Cássio F (2007) Effects of heavy metals on the production of thiol compounds by the aquatic fungi Fontanospora fusiramosa and Flagellospora curta. Ecotox Environ Saf 66:36–43

    Article  Google Scholar 

  21. Heard SB, Buchanan CK (2004) Grazer-collected facilitation hypothesis supported by laboratory but not field experiments. Can J Fish Aquat Sci 61:887–897

    Article  Google Scholar 

  22. Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  23. Hughes JB, Ives AR, Norberg J (2002) Do species interactions buffer environment variation (in theory)? In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 92–101

    Google Scholar 

  24. Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460

    Article  Google Scholar 

  25. Kizing AP, Pacala SW, Tilman D (2002) The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton

    Google Scholar 

  26. Lecerf A, Dobson M, Dang CK, Chauvet E (2005) Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia 164:432–442

    Article  Google Scholar 

  27. Lecerf A, Risnoveanu G, Popescu C, Gessner MO, Chauvet E (2007) Decomposition of diverse litter mixtures in streams. Ecology 88:219–227

    Article  PubMed  Google Scholar 

  28. Loreau M, Downing A, Emmerson MC, Gonzalez A, Hughes J, Inchausti P, Joshi J, Norberg J, Sala O (2002) A new look at the relationship between diversity and stability. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 79–91

    Google Scholar 

  29. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  PubMed  Google Scholar 

  30. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  Google Scholar 

  31. Nikolcheva LG, Bärlocher F (2004) Taxon-specific primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Progress 3:41–50

    Article  Google Scholar 

  32. Nikolcheva LG, Bärlocher F (2005) Seasonal and substrate preferences of fungi on leaves in streams: traditional versus molecular evidence. Environ Microbiol 7:270–280

    Article  CAS  PubMed  Google Scholar 

  33. Nikolcheva LG, Cockshutt AM, Bärlocher F (2003) Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approaches. Appl Environ Microbiol 69:2548–2554

    Article  CAS  PubMed  Google Scholar 

  34. Niyogi DK, McKnight DM, Lewis WM Jr (2002) Fungal communities and biomass in mountain stream affected by mine drainage. Arch Hydrobiol 155:255–271

    Google Scholar 

  35. Niyogi DK, McKnight DM, Lewis WM Jr (2002) Effects of mine drainage on breakdown of aspen litter in mountain streams. Wat Air Soil Pollut: Focus 2:329–342

    Article  CAS  Google Scholar 

  36. Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266–5273

    Article  CAS  PubMed  Google Scholar 

  37. Pascoal C, Cássio F (2008) Linking fungal diversity to the functioning of freshwater ecosystems. In: Sridhar KR, Bärlocher F, Hyde KD (eds) Novel techniques and ideas in mycology. Fungal Diversity Press, Hong Kong, pp 1–8

  38. Pascoal C, Cássio F, Marcotegui A, Sanz B, Gomes P (2005) Role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. J North Amer Benthol Soc 24:784–797

    Article  Google Scholar 

  39. Raviraja NS, Nikolcheva LG, Bärlocher F (2006) Fungal growth and leaf decompostion are affected by amount and type of inoculum and by external nutrients. Sydowia 58:98–104

    Google Scholar 

  40. Seena S, Wynberg N, Bärlocher F (2008) Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Divers 30:1–14

    Google Scholar 

  41. Setälä H, McLean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139:98–107

    Article  PubMed  Google Scholar 

  42. Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze E-D, Siamantziouras A-SD, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (2005) Ecosystem effects of biodiversity manipulations in European grasslands. Ecol Monogr 75:37–63

    Article  Google Scholar 

  43. Sridhar KR, Krauss G, Bärlocher F, Raviraja NS, Wennrich R, Baumbach R, Krauss G-J (2001) Decomposition of alder leaves in two heavy metal-polluted streams in central Germany. Aquat Microb Ecol 26:73–80

    Article  Google Scholar 

  44. Tilman D, Lehman C (2002) Biodiversity, composition and ecosystem processes: theory and concepts. In: Kinzig AP, Pacala SW, Tilman D (eds) The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton, pp 9–41

    Google Scholar 

  45. Tilman D, Lehman CL, Bristow CE (1998) Diversity–stability relationships: statistical inevitability or ecological consequence? Am Nat 151:277–282

    Article  CAS  PubMed  Google Scholar 

  46. Tiunov AV, Scheu S (2005) Facilitative interactions rather than resource partitioning drive diversity–functioning relationships in laboratory fungal communities. Ecol Lett 8:618–625

    Article  Google Scholar 

  47. Treton C, Chauvet E, Charcosset J-Y (2004) Competitive interaction between two aquatic hyphomycete species and increase in leaf litter breakdown. Microb Ecol 48:439–446

    Article  CAS  PubMed  Google Scholar 

  48. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  49. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment. The insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  CAS  PubMed  Google Scholar 

  50. Young CJ (1995) Microwave-assisted extraction of the fungal metabolite ergosterol and total fatty acids. J Agric Food Chem 43:2904–2910

    Article  CAS  Google Scholar 

  51. Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

Traveling expenses were supported by Fundação Calouste Gulbenkian (F. Cássio) and FCT-POCTI/34024/BSE/2000 (C. Pascoal). The research has been supported by an NSERC Discovery grant to F. Bärlocher. The authors are grateful to the reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Cássio.

Additional information

Cláudia Pascoal and Fernanda Cássio contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascoal, C., Cássio, F., Nikolcheva, L. et al. Realized Fungal Diversity Increases Functional Stability of Leaf Litter Decomposition Under Zinc Stress. Microb Ecol 59, 84–93 (2010). https://doi.org/10.1007/s00248-009-9567-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9567-z

Keywords

Navigation