Skip to main content
Log in

Population Dynamics of a Single-Stage Sulfidogenic Bioreactor Treating Synthetic Zinc-Containing Waste Streams

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Waste streams from industrial processes such as metal smelting or mining contain high concentrations of sulfate and metals with low pH. Dissimilatory sulfate reduction carried out by sulfate-reducing bacteria (SRB) at low pH can combine sulfate reduction with metal-sulfide precipitation and thus open possibilities for selective metal recovery. This study investigates the microbial diversity and population changes of a single-stage sulfidogenic gas-lift bioreactor treating synthetic zinc-rich waste water at pH 5.5 by denaturing gradient gel electrophoresis of 16S rRNA gene fragments and quantitative polymerase chain reaction. The results indicate the presence of a diverse range of phylogenetic groups with the predominant microbial populations belonging to the Desulfovibrionaceae from δ-Proteobacteria. Desulfovibrio desulfuricans-like populations were the most abundant among the SRB during the three stable phases of varying sulfide and zinc concentrations and increased from 13% to 54% of the total bacterial populations over time. The second largest group was Desulfovibrio marrakechensis-like SRB that increased from 1% to about 10% with decreasing sulfide concentrations. Desulfovibrio aminophilus-like populations were the only SRB to decrease in numbers with decreasing sulfide concentrations. However, their population was <1% of the total bacterial population in the reactor at all analyzed time points. The number of dissimilatory sulfate reductase (DsrA) gene copies per number of SRB cells decreased from 3.5 to 2 DsrA copies when the sulfide concentration was reduced, suggesting that the cells' sulfate-reducing capacity was also lowered. This study has identified the species present in a single-stage sulfidogenic bioreactor treating zinc-rich wastewater at low pH and provides insights into the microbial ecology of this biotechnological process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  2. Baena S, Fardeau ML, Labat M, Ollivier B, Garcia JL, Patel BK (1998) Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon. Syst Appl Microbiol 21:498–504

    PubMed  CAS  Google Scholar 

  3. Bijmans, MFM, Ennin, F, Dopson, M, Lens, PNL, Buisman, CJN (2009) Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor. J Microbiol Biotechnol 18:1809–1818

    Google Scholar 

  4. Bijmans MFM, Peeters TWT, Lens PNL, Buisman CJN (2008) High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrane bioreactor fed with formate. Water Res 42:2439–2448

    Article  PubMed  CAS  Google Scholar 

  5. Bijmans MFM, Van Helvoort PJ, Buisman CJN, Lens P (2009) Effect of the sulfide concentration on zinc bio-precipitation in a single stage sulfidogenic bioreactor at pH 5.5 (submitted)

  6. Brysch K, Schneider C, Fuchs G, Widdel F (1987) Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch Microbiol 148:264–274

    Article  CAS  Google Scholar 

  7. Chamkh, F, El Amrani, K, Lemos, PC, Besson, S, Lorquin, J, Fassouane, A, Reis, M, Qatibi, AI (2007) Desulfovibrio marrakechensis sp. nov., a new sulfate-reducing bacterium isolated from olive mill wastewater evaporation ponds. http://www.ncbi.nlm.nih.gov Unpublished

  8. Chang YJ, Peacock AD, Long PE, Stephen JR, McKinley JP, Macnaughton SJ, Hussain AK, Saxton AM, White DC (2001) Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl Environ Microbiol 67:3149–3160

    Article  PubMed  CAS  Google Scholar 

  9. Colleran E, Finnegan S, Lens P (1995) Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek 67:29–46

    Article  PubMed  CAS  Google Scholar 

  10. Dar SA, Kuenen JG, Muyzer G (2005) Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities. Appl Environ Microbiol 71:2325–2330

    Article  PubMed  CAS  Google Scholar 

  11. Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877

    PubMed  CAS  Google Scholar 

  12. Dopson M, Lindstrom EB (2004) Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite. Microbial Ecol 48:19–28

    Article  CAS  Google Scholar 

  13. Gibson GR (1990) Physiology and ecology of the sulphate-reducing bacteria. J Appl Bacteriol 69:769–797

    PubMed  CAS  Google Scholar 

  14. Isa Z, Grusenmeyer S, Verstraete W (1986) Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiological aspects. Appl Environ Microbiol 51:580–587

    PubMed  CAS  Google Scholar 

  15. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Tot Environ 338:3–14

    Article  CAS  Google Scholar 

  16. Jong T, Parry DL (2006) Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res 40:2561–2571

    Article  PubMed  CAS  Google Scholar 

  17. Kaksonen AH, Plumb JJ, Franzmann PD, Puhakka JA (2004) Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiol Ecol 47:279–289

    Article  PubMed  CAS  Google Scholar 

  18. Kaksonen AH, Plumb JJ, Robertson WJ, Franzmann PD, Gibson JAE, Puhakka JA (2004) Culturable diversity and community fatty acid profiling of sulfate-reducing fluidized-bed reactor treating acidic, metal-containing wastewater. Geomicrobiology J 21:469–480

    Article  CAS  Google Scholar 

  19. Kondo R, Nedwell DB, Purdy KJ, de Queiroz Silva S (2004) Detection and enumeration of sulfate-reducing bacteria in estuarine marine sediments by competitive PCR. Geomicrobiol J 21:145–157

    Article  CAS  Google Scholar 

  20. Koschorreck M, Wendt-Potthoff K, Geller W (2003) Microbial sulfate reduction at low pH in sediments of an acidic lake in Argentina. Environ Sci Technol 37:1159–1162

    Article  PubMed  CAS  Google Scholar 

  21. Kusel K, Dorsch T, Acker G, Stackebrandt E, Drake H (2000) Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int J System Evol Microbiol 50:537–546

    CAS  Google Scholar 

  22. Lens PNL, Visser A, Janssen AJH, Hulshoff Pol LL, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28:41–88

    Article  CAS  Google Scholar 

  23. Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J System Evol Microbiol 55:2085–2091

    Article  CAS  Google Scholar 

  24. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  25. Maillacheruvu KY, Parkin GF (1996) Kinetics of growth, substrate utilization and sulfide toxicity for propionate, acetate, and hydrogen utilizers in anaerobic systems. Water Environ Res 68:1099–1106

    Article  CAS  Google Scholar 

  26. Manz W, Wagner M, Amann R, Schleifer KH (1994) In situ characterization of the microbial consortia active in two wastewater treatment plants. Water Res 28:1715–1723

    Article  CAS  Google Scholar 

  27. McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W25

    Article  PubMed  CAS  Google Scholar 

  28. Monis PT, Giglio S, Saint CP (2005) Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem 340:24–34

    Article  PubMed  CAS  Google Scholar 

  29. Morales TA, Dopson M, Athar R, Herbert RB (2005) Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal. Biotechnol Bioengin 90:543–551

    Article  CAS  Google Scholar 

  30. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  31. Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172

    Article  PubMed  CAS  Google Scholar 

  32. Nakagawa T, Hanada S, Maruyama A, Marumo K, Urabe T, Fukui M (2002) Distribution and diversity of thermophilic sulfate-reducing bacteria within a Cu-Pb-Zn mine (Toyoho, Japan). FEMS Microbiol Ecol 41:199–209

    Article  PubMed  CAS  Google Scholar 

  33. O'Flaherty V, Mahony T, O'Kennedy RE, Colleran E (1998) Effect of pH on growth kinetics and sulfide toxicity thresholds of a range of methanogenic, syntrophic and sulfate-reducing bacteria. Process Biochem 33:555–569

    Article  Google Scholar 

  34. Okabe S, Nielsen PH, Jones WL, Characklis WG (1995) Sulfide product inhibition of Desulfovibrio desulfuricans in batch and continuous cultures. Water Res 29:571–578

    Article  CAS  Google Scholar 

  35. Oude Elferink SJWH, Visser A, Pol LWH, Stams AJM (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol Rev 15:119–136

    Article  CAS  Google Scholar 

  36. Pol LW, Lens PN, Weijma J, Stams AJ (2001) New developments in reactor and process technology for sulfate reduction. Water Sci Technol 44:67–76

    PubMed  CAS  Google Scholar 

  37. Sassi AB, Boularbah A, Jaouad A, Walker G, Boussaid A (2006) A comparison of olive oil mill wastewaters (OMW) from three different processes in morocco. Process Biochem 41:74–78

    Article  CAS  Google Scholar 

  38. Schäfer H, Muyzer G (2001) Denaturing gradient gel electrophoresis in marine microbial ecology. Methods in microbiology. In: Paul JH (ed) Marine microbiology, vol 30. Academic, New York, pp 425–468

    Chapter  Google Scholar 

  39. Stams AJM, Plugge CM, de Bok FAM, van Houten BHGW, Lens P, Dijkman H, Weijma J (2005) Metabolic interactions in methanogenic and sulfate reducing bacteria. Water Sci Technol 52:13–20

    PubMed  CAS  Google Scholar 

  40. von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  41. Weijma J, Copini CFM, Buisman CJN, Schultz CE (2002) Biological recovery of metals, sulfur and water in the mining and metallurgical industry. In: Lens PNL, Hulshoff Pol L (eds) Water recycling and resource recovery in industry: analysis, technologies and implementation. IWA, London, pp 605–625

    Google Scholar 

  42. Weijma J, Gubbels F, Hulshoff Pol LW, Stams AJM, Lens P, Lettinga G (2002) Competition for H2 between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor. Water Sci Technol 45:75–80

    PubMed  CAS  Google Scholar 

  43. Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria, p. 469–585. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York

    Google Scholar 

  44. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 3352–3378

    Google Scholar 

  45. Zhang T, Fang HH (2006) Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl Microbiol Biotechnol 70:281–289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out in the frame of European Sixth Framework Programme for Research and Development “BioMinE” project (European contract NMP1-CT-500329-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Dopson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dar, S.A., Bijmans, M.F.M., Dinkla, I.J.T. et al. Population Dynamics of a Single-Stage Sulfidogenic Bioreactor Treating Synthetic Zinc-Containing Waste Streams. Microb Ecol 58, 529–537 (2009). https://doi.org/10.1007/s00248-009-9509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9509-9

Keywords

Navigation