Skip to main content
Log in

Engineering Root Exudation of Lotus toward the Production of Two Novel Carbon Compounds Leads to the Selection of Distinct Microbial Populations in the Rhizosphere

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The culture of opine-producing transgenic Lotus plants induces the increase in the rhizosphere of bacterial communities that are able to utilize these molecules as sole carbon source. We used transgenic Lotus plants producing two opines, namely mannopine and nopaline, to characterize the microbial communities directly influenced by the modification of root exudation. We showed that opine-utilizers represent a large community in the rhizosphere of opine-producing transgenic Lotus. This community is composed of at least 12 different bacterial species, one third of which are able to utilize the opine mannopine and two thirds the opine nopaline. Opine utilizers are diverse, belonging to the Gram-positive and -negative bacteria. We described two novel mannopine-utilizing species, Rhizobium and Duganella spp., and five novel nopaline-utilizing species, Duganella, Afipia, Phyllobacterium, Arthrobacter, and Bosea spp. Although opine utilizers mostly belong to the α-Proteobacteria, Rhizobiaceae family, there is little overlap between the populations able to utilize each of the two opines produced by the plants. Noticeably, in the rhizosphere of transgenic Lotus, only the opine mannopine favors the growth of Agrobacterium tumefaciens, the bacterium from which opines have been characterized. The diversity of opine utilizers from the rhizosphere of Lotus plants is greater than that observed from any other environment. Therefore, transgenic plants with engineered exudation constitute an excellent tool to isolate and characterize specific microbial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. DA Barber JK Martin (1974) ArticleTitleThe release of organic substances by cereal roots into soil. New Phytol 76 69–80

    Google Scholar 

  2. E Baudoin E Benizri A Guckert (2001) ArticleTitleMetabolic structure of bacterial communities from distinct maize rhizosphere compartments. Eur J Soil Biol 37 85–93 Occurrence Handle10.1016/S1164-5563(01)01071-8

    Article  Google Scholar 

  3. E Baudoin E Benizri A Guckert (2002) ArticleTitleImpact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl Soil Ecol 19 135–145 Occurrence Handle10.1016/S0929-1393(01)00185-8

    Article  Google Scholar 

  4. C Beaulieu LJ Coulombe RL Granger B Miki G Beauchamp G Rossignol P Dion (1983) ArticleTitleCharacterization of opine-utilizing bacteria isolated from Quebec. Phytoprotection 64 61–68

    Google Scholar 

  5. CR Bell LW Moore ML Canfield (1991) In vitro studies on the interactions on Agrobacterium spp. and Pseudomonas spp. isolated from opine environments. DL Keister PB Cregan (Eds) The Rhizosphere and Plant Growth. Kluwer Academic Dordrecht 386

    Google Scholar 

  6. ML Canfield LW Moore (1991) ArticleTitleIsolation and characterization of opine-utilizing strains of Agrobacterium tumefaciens and fluorescent strains of Pseudomonas spp from rootstocks of Malus. Phytopathology 81 440–443 Occurrence Handle1:CAS:528:DyaK3MXltlWlsrs%3D

    CAS  Google Scholar 

  7. BG Clare A Kerr DA Jones (1990) ArticleTitleCharacteristics of the nopaline catabolic plasmid in Agrobacterium strains K84 and K1026 used for biological control of crown gall disease. Plasmid 23 126–137 Occurrence Handle1:CAS:528:DyaK3cXltFSjtLw%3D Occurrence Handle2194227

    CAS  PubMed  Google Scholar 

  8. EA Curl B Truelove (Eds) (1986) The Rhizosphere, vol 15, Advanced Series in Agricultural Sciences. Springer-Verlag Berlin 288

    Google Scholar 

  9. Y Dessaux A Petit J Tempé (1992) Opines in Agrobacterium biology. DPS Verna (Eds) Molecular Signals in Plant–Microbe Communications. CRC Press Boca Raton, FL 109–136

    Google Scholar 

  10. Y Dessaux A Petit J Tempé (1993) ArticleTitleChemistry and biochemistry of opines, chemical mediators of paratism. Phytochemistry 34 31–38 Occurrence Handle10.1016/S0031-9422(00)90778-7 Occurrence Handle1:CAS:528:DyaK3sXmsVGjtrs%3D

    Article  CAS  Google Scholar 

  11. C Di Battista-Leboeuf E Benizri C Corbel S Piutti A Guckert (2002) ArticleTitleDiversity of Pseudomonas sp. populations in relation to maize root location and growth stage. Agronomie . .

    Google Scholar 

  12. G Gäde (1980) ArticleTitleBiological role of octopine formation in marine mollucs. Mar Biol Lett 1 121–135

    Google Scholar 

  13. P Guyon A Petit J Tempé Y Dessaux (1993) ArticleTitleTransformed plants producing opines specifically promote growth of opine-degrading Agrobacteria. Mol Plant Microbe Interact 6 IssueID1 92–98 Occurrence Handle1:CAS:528:DyaK3sXhvVOqurs%3D

    CAS  Google Scholar 

  14. RA Hamlem FL Lukezic JR Bloom (1972) ArticleTitleInfluence of age and stage of development on the neutral carbohydrate components in root exudates from alfalfa plants grown in agnotobiotic environment. Can J Plant Sci 52 633–642

    Google Scholar 

  15. L Hiltner (1904) ArticleTitleÜber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brachte. Abs Dtsch Landwirt Ges 98 59–78

    Google Scholar 

  16. KS Kim SK Farrand (1996) ArticleTitleTi plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor. J Bacteriol 178 3275–3284 Occurrence Handle1:CAS:528:DyaK28Xjt1Klsro%3D Occurrence Handle8655509

    CAS  PubMed  Google Scholar 

  17. AA Lameta M Jay (1987) ArticleTitleStudy of soybean and lentil root exsudates. Plant Soil 101 267–272

    Google Scholar 

  18. JM Lynch JM Whipps (1991) Substrate flow in the rhizosphere. DL Reister PB Cregan (Eds) The Rhizosphere and Plant Growth. Kluwer Academic Dordrecht 15–24

    Google Scholar 

  19. M Mansouri A Petit P Oger Y Dessaux (2002) ArticleTitleEngineered rhizophere: the trophic bias generated by opine-producing plants is independent of the opine-type, the soil origin and the plant species. Appl Environ Microbiol 68 2562–2566

    Google Scholar 

  20. BB McSpadden-Gardener DM Weller (2001) ArticleTitleChanges in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl Environ Microbiol 67 4414–4425 Occurrence Handle10.1128/AEM.67.10.4414-4425.2001 Occurrence Handle1:CAS:528:DC%2BD3MXns1Wisrg%3D Occurrence Handle11571137

    Article  CAS  PubMed  Google Scholar 

  21. C Mougel (2000) Structure génétique des populations d’Agrobacterium spp.: effet sélectif de la plante et implication dans la diffusion conjugative du plasmide Ti. Université Claude Bernard-Lyon1 Lyon 188

    Google Scholar 

  22. CS Nautiyal P Dion WS Chilton (1991) ArticleTitleMannopine and mannopinic acid as substrates for Arthrobacter sp. strain MBA209 and Pseudomonas putida NA513. J Bacteriol 173 2833–2841 Occurrence Handle1:CAS:528:DyaK3MXisVCjtbo%3D Occurrence Handle1902209

    CAS  PubMed  Google Scholar 

  23. KP O’Connell RM Goodman J Handelsman (1996) ArticleTitleEngineering the rhizosphere: expressing a bias. Trends Biotechnol 14 83–88 Occurrence Handle10.1016/0167-7799(96)80928-0 Occurrence Handle1:CAS:528:DyaK28XhsleqtL0%3D

    Article  CAS  Google Scholar 

  24. P Oger H Mansouri Y Dessaux (2000) ArticleTitleEffect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Mol Ecol 9 881–890 Occurrence Handle10.1046/j.1365-294x.2000.00940.x Occurrence Handle1:STN:280:DC%2BD3M3pvFOgsw%3D%3D Occurrence Handle10886651

    Article  CAS  PubMed  Google Scholar 

  25. P Oger H Mansouri A Petit L Gardan Y Dessaux X Nesme (1998) ArticleTitleSensitivity, resolution and limitation of the use of PCR-RFLP of the 16S rRNA gene for the identification of plant pathogenic and plant associated bacteria. Gen Select Evol 30 S311–S332 Occurrence Handle1:CAS:528:DyaK1cXotVahsb0%3D

    CAS  Google Scholar 

  26. P Oger A Petit Y Dessaux (1997) ArticleTitleGenetically engineered plants producing opines alter their biological environment. Nature/Biotechnol 15 369–372 Occurrence Handle1:CAS:528:DyaK2sXit1Gju7g%3D

    CAS  Google Scholar 

  27. Petit A, Dessaux Y, Tempé J (1978) The biological significance of opines. I. A study of opine catabolism by Agrobacterium tumefaciens. in Proc. 4th Int. Conf. Plant. Path. Bact, Angers, France, pp 43–47

  28. A Petit J Stougaard A Kühle KA Marcker J Tempé (1987) ArticleTitleTransformation and regeneration of the legume Lotus corniculatus: a system for molecular studies of symbiotic nitrogen fixation. Mol Gen Genet 207 245–250 Occurrence Handle1:CAS:528:DyaL2sXksFensL4%3D

    CAS  Google Scholar 

  29. C Picard C Ponsonnet E Paget X Nesme P Simonet (1992) ArticleTitleDetection and enumeration of bacteria in soil by direct DNA extraction. Appl Environ Microbiol 58 2717–2722 Occurrence Handle1:CAS:528:DyaK38XmsVKiu74%3D Occurrence Handle1444380

    CAS  PubMed  Google Scholar 

  30. Z Rengel G Ross P Hirsch (1998) ArticleTitlePlant genotype and micronutrients status influence colonization of wheat roots by soil bacteria. J Plant Nutrition 21 99–113 Occurrence Handle1:CAS:528:DyaK1cXhsVCgsL8%3D

    CAS  Google Scholar 

  31. AD Rovira RC Forster JK Martin (1978) Origin, nature and nomenclature of the organic materials in the rhizosphere. JL Harley R Scott-Russell (Eds) The Root-Soil Interface. Academic Press London 1–4

    Google Scholar 

  32. J Sambrook ER Fritsch T Maniatis (Eds) (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press Cold Spring Harbor, New York

    Google Scholar 

  33. N Sans G Schroder J Schroder (1987) ArticleTitleThe noc region of Ti plasmid C58 codes for arginase and ornithine cyclodeaminase. Eur J Biochem 167 81–87 Occurrence Handle1:CAS:528:DyaL2sXlt1yjtb4%3D Occurrence Handle3040404

    CAS  PubMed  Google Scholar 

  34. MA Savka (1993) Validity of the opine concept in plant–bacterial interactions. University of Illinois at Urbana-Champaign Urbana 219

    Google Scholar 

  35. MA Savka Y Dessaux P Oger S Rossbach (2002) ArticleTitleEngineering bacterial competitiveness and persistence in the phytosphere. Mol Plant Microbe Interact 15 866–974 Occurrence Handle1:CAS:528:DC%2BD38XntVShu7g%3D Occurrence Handle12236593

    CAS  PubMed  Google Scholar 

  36. MA Savka SK Farrand (1997) ArticleTitleModification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nature/Biotechnol 15 373–377

    Google Scholar 

  37. SD Siciliano CM Theoret JR de Freitas PJ Hucl JJ Germida (1998) ArticleTitleDifferences in the microbial communities associated with the roots of different cultivars of canola and wheat. Can J Microbiol 44 844–851 Occurrence Handle10.1139/cjm-44-9-844 Occurrence Handle1:CAS:528:DyaK1cXnvFyksbg%3D

    Article  CAS  Google Scholar 

  38. G Tremblay R Gagliardo WS Chilton P Dion (1987) ArticleTitleDiversity among opine-utilizing bacteria: Identification of Coryneform isolates. Appl Environ Microbiol 53 1519–1524 Occurrence Handle1:CAS:528:DyaL2sXltFamt78%3D

    CAS  Google Scholar 

  39. V Vaudequin-Dransart A Petit C Poncet C Ponsonnet X Nesme JB Jones H Bouzar WS Chilton Y Dessaux (1995) ArticleTitleNovel Ti plasmids in Agrobacterium strains isolated from fig tree and chrysanthemum tumors and their opinelike molecules. Mol Plant Microbe Interact 8 311–321 Occurrence Handle1:CAS:528:DyaK2MXls1Oku70%3D Occurrence Handle7756696

    CAS  PubMed  Google Scholar 

  40. JM Whipps JM Lynch (1985) ArticleTitleEnergy losses by the plant in rhizodeposition. Ann Proc Phytochem Soc Eur 26 59–71

    Google Scholar 

  41. M Wilson MA Savka I Hwang SK Farrand SE Lindow (1995) ArticleTitleAltered epiphytic colonization of mannityl opine-producing transgenic tobacco plants by a mannityl opine-catabolizing strain of Pseudomonas syringae. Appl Environ Microbiol 61 2151–2158 Occurrence Handle1:CAS:528:DyaK2MXlvFOgtrk%3D

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Jacqueline Haurat for her skillful technical assistance. P.O. and H.M. were supported by a grant from the Ministère de la Recherche et de la Technologic. This work was made possible by a grant from the Bureau des Ressources Génétiques Y.D. and X.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Oger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oger, P., Mansouri, H., Nesme, X. et al. Engineering Root Exudation of Lotus toward the Production of Two Novel Carbon Compounds Leads to the Selection of Distinct Microbial Populations in the Rhizosphere . Microb Ecol 47, 96–103 (2004). https://doi.org/10.1007/s00248-003-2012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-003-2012-9

Keywords

Navigation