Skip to main content
Log in

Strong Indirect Effects of a Submersed Aquatic Macrophyte, Vallisneria americana, on Bacterioplankton Densities in a Mesotrophic Lake

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Phytoplankton and allochthonous matter are important sources of dissolved organic carbon (DOC) for planktonic bacteria in aquatic ecosystems. But in small temperate lakes, aquatic macrophytes may also be an important source of DOC, as well as a source or sink for inorganic nutrients. We conducted micro- and mesocosm studies to investigate the possible effects of an actively growing macrophyte, Vallisneria americana, on bacterial growth and water chemistry in mesotrophic Calder Lake. A first microcosm (1 L) study conducted under high ambient NH +4 levels (NH +4 ≥ 10 µM) demonstrated that macrophytes had a positive effect on bacterial densities through release of DOC and P. A second microcosm experiment, conducted under NH +4 -depleted conditions (NH +4 < 10 µM), examined interactive effects of macrophytes and their sediments on bacterial growth and water chemistry. Non-rooted macrophytes had negative effects on bacterial numbers, while rooted macrophytes had no significant effects, despite significant increases in DOC and P. A 70-L mesocosm experiment manipulated macrophytes, as well as N and P supply under surplus NH +4 conditions (NH +4 ≥ 10 µM), and measured effects on bacterial growth, Chl a concentrations, and water chemistry. Bacterial growth and Chl a concentrations declined with macrophyte additions, while bacterial densities increased with P addition (with or without N). Results suggest that the submersed macrophyte Vallisneria exerts a strong but indirect effect on bacteria by modifying nutrient conditions and/or suppressing phytoplankton. Effects of living macrophytes differed with ambient nutrient conditions: under NH +4 -surplus conditions, submersed macrophytes stimulated bacterioplankton through release of DOC or P, but in NH +4 -depleted conditions, the influence of Vallisneria was negative or neutral. Effects of living macrophytes on planktonic bacteria were apparently mediated by the macrophytes use and/or release of nutrients, as well as through possible effects on phytoplankton production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. InstitutionalAuthorNameAmerican Public Health Association (1985) Standard Methods for the Analysis of Water and Wastewater, 16th ed. American Public Health Association Washington, DC

    Google Scholar 

  2. F Azam T Fenchel JG Field JS Gray LA Meyer-Reil F Thingstad (1983) ArticleTitleThe ecological role of water-column microbes in the sea. Mar Ecol Progr Ser 10 257–263

    Google Scholar 

  3. JW Barko RM Smart (1980) ArticleTitleMoblization of sediment phosphorus by submersed freshwater macrophytes. Freshwater Biol 10 229–238 Occurrence Handle1:CAS:528:DyaL3cXls1KrtLY%3D

    CAS  Google Scholar 

  4. J Biernacki J Lovett-Doust L Lovett-Doust (1997) ArticleTitleTemporal biomonitoring using wild celery, Vallisneria Americana. J Great Lakes Res 23 97–107 Occurrence Handle1:CAS:528:DyaK2sXjsFSjtL4%3D

    CAS  Google Scholar 

  5. Bran+Luebbe Analyzing Technologies (1986) Ortho-phosphate in water and seawater. Industrial method no. 812-86T. Bran+Luebbe Analyzing Technologies, Buffalo Grove, IL

  6. Bran+Luebbe Analyzing Technologies (1986) Ammonium in water and seawater. Industrial method no. 804-86T. Bran+Luebbe Analyzing Technologies, Buffalo Grove, IL

  7. Bran+Luebbe Analyzing Technologies (1987) Nitrate/nitrite in water and seawater. Industrial method no. 818-87T. Bran+Luebbe Analyzing Technologies, Buffalo Grove, IL

  8. Bran+Luebbe Analyzing Technologies (1989) Dissolved organic carbon in water and seawater. Industrial method no. 860-89T. Bran+Luebbe Analyzing Technologies, Buffalo Grove, IL

  9. M Brylinsky (1977) ArticleTitleRelease of dissolved organic matter by some marine macrophytes. Mar Biol 39 213–220

    Google Scholar 

  10. SR Carpenter DM Lodge (1986) ArticleTitleEffects of submersed macrophytes on ecosystem processes. Aquat Bot 26 341–370 Occurrence Handle10.1016/0304-3770(86)90031-8

    Article  Google Scholar 

  11. R Carignan J Kalff (1982) ArticleTitlePhosphorous release by submerged macrophytes: significance to epiphyton and phytoplankton. Limnol Oceanogr 27 419–427 Occurrence Handle1:CAS:528:DyaL38Xkt1SqtrY%3D

    CAS  Google Scholar 

  12. JJ Cole S Findlay ML Pace (1988) ArticleTitleBacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43 1–10

    Google Scholar 

  13. JJ Cole (1999) ArticleTitleAquatic microbiology for ecosystem scientists: new and recycled paradigms in ecological microbiology. Ecosystems 2 215–225 Occurrence Handle10.1007/s100219900069

    Article  Google Scholar 

  14. MF Coveney RG Wetzel (1992) ArticleTitleEffects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures. Appl Environ Microbiol 58 150–156 Occurrence Handle1:CAS:528:DyaK38XotVWnsA%3D%3D

    CAS  Google Scholar 

  15. SJ Eisenreich RT Bannerman DE Armstrong (1975) ArticleTitleA simplified phosphorus analysis technique. Environ Lett 9 43–53 Occurrence Handle1:CAS:528:DyaE28XltlShurw%3D Occurrence Handle1183414

    CAS  PubMed  Google Scholar 

  16. NC Fassett (1957) A Manual of Aquatic Plants University of Wisconsin Press Madison, WI

    Google Scholar 

  17. S Findlay L Carlough MT Crocker HK Gill JL Meyer PJ Smith (1986) ArticleTitleBacterial growth on macrophyte leachate and fate of bacterial production. Limnol Oceanogr 31 1335–1341 Occurrence Handle1:CAS:528:DyaL2sXpvFWitw%3D%3D

    CAS  Google Scholar 

  18. S Findlay ML Pace D Lints K Howe (1992) ArticleTitleBacterial metabolism of organic carbon in the tidal freshwater Hudson Estuary. Mar Ecol Prog Ser 89 147–153 Occurrence Handle1:CAS:528:DyaK3sXit12rurg%3D

    CAS  Google Scholar 

  19. PD Goulden P Brooksbank (1975) ArticleTitleAutomated determinations of dissolved organic carbon in lake water. Anal Chem 47 1943–1946 Occurrence Handle1:CAS:528:DyaE2MXlvFOltr8%3D Occurrence Handle1190457

    CAS  PubMed  Google Scholar 

  20. RA Hough RG Wetzel (1975) ArticleTitleThe release of dissolved organic carbon from submersed aquatic macrophytes: diel, seasonal and community relationships. Int Ver Theor Angew Limnol Verh 19 939–948

    Google Scholar 

  21. DL Kirchman (1994) ArticleTitleThe uptake of inorganic nutrients by heterotrophic bacteria. Microb Ecol 28 255–271 Occurrence Handle1:CAS:528:DyaK2MXit1Wktbo%3D

    CAS  Google Scholar 

  22. DL Kirchman HW Ducklow JJ McCarthy C Garside (1994) ArticleTitleBiomass and nitrogen uptake by heterotrophic bacteria during spring phytoplankton bloom in North Atlantic Ocean. Deep Sea Res 41 879–895 Occurrence Handle10.1016/0967-0637(94)90081-7

    Article  Google Scholar 

  23. S Körner A Nicklisch (2002) ArticleTitleAllelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J Phycol 38 862–871 Occurrence Handle10.1046/j.1529-8817.2002.t01-1-02001.x

    Article  Google Scholar 

  24. JC Kurtz DF Yates JM Macauley RL Quarles FJ Genthner CA Chancy R Devereux (2003) ArticleTitleEffects of light reduction on growth of the submerged macrophyte Vallisneria americana and the community of root-associated heterotrophic bacteria. J Exp Mar Biol Ecol 291 199–218

    Google Scholar 

  25. U Larsson A Hagstrom (1979) ArticleTitlePhytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar Biol 52 199–206

    Google Scholar 

  26. J Le JD Wehr L Campbell (1994) ArticleTitleUncoupling of bacterioplankton and phytoplankton production in fresh waters is affected by inorganic nutrient limitation. Appl Environ Microbiol 60 2086–2093 Occurrence Handle1:CAS:528:DyaK2cXktFOhsLo%3D

    CAS  Google Scholar 

  27. RM Lowden (1982) ArticleTitleAn approach to the taxonomy of Valissneria L. (Hydrocharitaceae). Aquat Bot 13 269–298 Occurrence Handle10.1016/0304-3770(82)90064-X

    Article  Google Scholar 

  28. CP McRoy RJ Barsdate (1970) ArticleTitlePhosphate absorption in eelgrass. Limnol Oceanogr 15 6–13 Occurrence Handle1:CAS:528:DyaE3cXktlagtLc%3D

    CAS  Google Scholar 

  29. CP McRoy RJ Barsdate M Nebert (1972) ArticleTitlePhosphorus cycling in an eelgrass (Zostera marina L.) ecosystem. Limnol Oceanogr 17 58–67 Occurrence Handle1:CAS:528:DyaE38XksVOgsLk%3D

    CAS  Google Scholar 

  30. AM Mickle RG Wetzel (1978) ArticleTitleEffectiveness of submersed angiosperm–epiphyte complexes on exchange of nutrients and organic carbon in littoral systems. I. Inorganic nutrients. Aquat Bot 4 303–316 Occurrence Handle10.1016/0304-3770(78)90028-1 Occurrence Handle1:CAS:528:DyaE1cXlsFantbc%3D

    Article  CAS  Google Scholar 

  31. DS Nichols DR Keeney (1976) ArticleTitleNitrogen nutrition of Myriophyllum spicatum: uptake and translocation of 15N by shoots and roots. Freshw Biol 6 145–154 Occurrence Handle1:CAS:528:DyaE1cXmtFGhtw%3D%3D

    CAS  Google Scholar 

  32. CA Ochs JJ Cole GE Likens (1995) ArticleTitlePopulation dynamics of bacterioplankton in an oligotrophic lake. J Plankton Res 17 356–391

    Google Scholar 

  33. P Penhale WO Smith Jr. (1977) ArticleTitleExcretion of dissolved organic carbon by eelgrass (Zostera marina) and its epiphytes. Limnol Oceanogr 22 400–407 Occurrence Handle1:CAS:528:DyaE2sXksVeqtL0%3D

    CAS  Google Scholar 

  34. LR Pomeroy (1974) ArticleTitleThe ocean’s food web, a changing paradigm. BioScience 24 499–504

    Google Scholar 

  35. KG Porter YS Feig (1980) ArticleTitleThe use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25 943–948

    Google Scholar 

  36. B Riemann M Søndergaard (1984) ArticleTitleMeasurements of diel rates of bacterial secondary production in aquatic environments. Appl Environ Microbiol 24 17–52

    Google Scholar 

  37. K Salonen KK Kolonen L Arvola (1983) ArticleTitleRespiration of plankton in two small, polyhumic lakes. Hydrobiologia 101 65–70

    Google Scholar 

  38. M Søndergaard (1981) ArticleTitleKinetics of extracellular release of l4C-labelled organic carbon by submerged macrophytes. Oikos 36 331–347

    Google Scholar 

  39. T Toolan JD Wehr S Findlay (1991) ArticleTitleInorganic phosphorous stimulation of bacterioplankton production in a meso-eutrophic lake. Appl Environ Microbiol 57 2074–2078 Occurrence Handle1:CAS:528:DyaK3MXkslyhtbg%3D

    CAS  Google Scholar 

  40. LJ Tranvik (1988) ArticleTitleAvailability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb Ecol 16 311–322 Occurrence Handle1:CAS:528:DyaL1cXlslGrsrs%3D

    CAS  Google Scholar 

  41. L Wang JC Priscu (1994) ArticleTitleInfluence of phytoplankton on the response of bacterioplankton growth in nutrient enrichment. Freshwat Biol 31 183–190

    Google Scholar 

  42. JD Wehr J Le L Campbell (1994) ArticleTitleDoes microbial biomass affect pelagic ecosystem efficiency? An experimental study. Microb Ecol 27 1–17 Occurrence Handle10.1007/BF00170110

    Article  Google Scholar 

  43. JD Wehr J Petersen S Findlay (1999) ArticleTitleInfluence of three contrasting detrital carbon sources on planktonic bacterial metabolism in a mesoeutrophic lake. Microb Ecol 37 23–35 Occurrence Handle10.1007/s002489900127 Occurrence Handle1:CAS:528:DyaK1MXhtVSlsLg%3D Occurrence Handle9852520

    Article  CAS  PubMed  Google Scholar 

  44. RG Wetzel (1969) ArticleTitleFactors influencing photosynthesis and excretion of dissolved organic matter by aquatic macrophytes in hard-water lakes. Int Ver Theor Angew Limnol Verh 17 72–85

    Google Scholar 

  45. RG Wetzel (1992) ArticleTitleGradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229 181–198 Occurrence Handle1:CAS:528:DyaK38Xit1Sqsbk%3D

    CAS  Google Scholar 

  46. RG Wetzel (2001) Limnology, 3rd ed. Academic Press San Diego

    Google Scholar 

  47. PA Wheeler DL Kirchman (1986) ArticleTitleUtilization of inorganic and organic nitrogen by bacteria grown in marine systems. Limnol Oceanogr 33 998–1009

    Google Scholar 

  48. C Wigand JD Wehr K Limburg B Gorham S Lonergan S Findlay (2000) ArticleTitleEffect of Vallisneria americana on community structure and ecosystem function in lake mesocosms. Hydrobiologia 418 137–146 Occurrence Handle10.1023/A:1003808220424

    Article  Google Scholar 

  49. L Wilkinson (1992) SYSTAT for Windows: Statistics, version 5. SYSTAT, Inc. Evanston, IL

    Google Scholar 

Download references

Acknowledgements

We thank Mr. Michael Lambros (field) and Ms. Molli MacDonald (laboratory) for their generous assistance with this study. The authors also acknowledge support for this study provided by the Louis Calder Center (Routh Fund), the National Science Foundation (DIR-9002145 to J.D.W.), and Fordham University (graduate fellowship to A.A.H.). This paper is contribution number 219 of the Louis Calder Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Huss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huss, A., Wehr, J. Strong Indirect Effects of a Submersed Aquatic Macrophyte, Vallisneria americana, on Bacterioplankton Densities in a Mesotrophic Lake . Microb Ecol 47, 305–315 (2004). https://doi.org/10.1007/s00248-003-1034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-003-1034-7

Keywords

Navigation