Skip to main content

Advertisement

Log in

Improving protocols for whole-body magnetic resonance imaging: oncological and inflammatory applications

  • Improving Protocols
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Whole-body MRI is increasingly used in the evaluation of a range of oncological and non-oncological diseases in infants, children and adolescents. Technical innovation in MRI scanners, coils and sequences have enabled whole-body MRI to be performed more rapidly, offering large field-of-view imaging suitable for multifocal and multisystem disease processes in a clinically useful timeframe. Together with a lack of ionizing radiation, this makes whole-body MRI especially attractive in the pediatric population. Indications include lesion detection in cancer predisposition syndrome surveillance and in the workup of children with known malignancies, and diagnosis and monitoring of a host of infectious and non-infectious inflammatory conditions. Choosing which patients are most likely to benefit from this technology is crucial, but so is adjusting protocols to the patient and disease to optimize lesion detection. The focus of this review is on protocols and the elements impacting image acquisition in pediatric whole-body MRI. We consider the practical aspects, from scanner and coil selection to patient positioning, single-center generic and indication-specific protocols with technical parameters, motion reduction strategies and post-processing. When optimized, collectively these lead to better standardization of whole-body MRI, and when married to systematic analysis and interpretation, they can improve diagnostic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Schäfer JF, Granata C, von Kalle T et al (2020) Whole-body magnetic resonance imaging in pediatric oncology — recommendations by the oncology task force of the ESPR. Pediatr Radiol 50:1162–1174

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schooler GR, Davis JT, Daldrup-Link HE et al (2018) Current utilization and procedural practices in pediatric whole-body MRI. Pediatr Radiol 48:1101–1107

    Article  PubMed  Google Scholar 

  3. Zadig P, von Brandis E, Lein RK et al (2021) Whole-body magnetic resonance imaging in children — how and why? A systematic review. Pediatr Radiol 51:14–24

    Article  PubMed  Google Scholar 

  4. Greer MC (2018) Whole-body magnetic resonance imaging: techniques and non-oncologic indications. Pediatr Radiol 48:1348–1363

    Article  PubMed  Google Scholar 

  5. Krabbe S, Eshed I, Sorensen IJ et al (2020) Novel whole-body magnetic resonance imaging response and remission criteria document diminished inflammation during golimumab treatment in axial spondyloarthritis. Rheumatology 59:3358–3368

    Article  CAS  PubMed  Google Scholar 

  6. Panwar J, Tolend M, Lim L et al (2021) Whole-body MRI quantification for assessment of bone lesions in chronic nonbacterial osteomyelitis patients treated with pamidronate: a prevalence, reproducibility, and responsiveness study. J Rheumatol 48:751–759

    Article  PubMed  Google Scholar 

  7. Panwar J, Tolend M, Redd B et al (2021) Consensus-driven conceptual development of a standardized whole body-MRI scoring system for assessment of disease activity in juvenile idiopathic arthritis: MRI in JIA OMERACT working group. Semin Arthritis Rheum 51:1350–1359

    Article  PubMed  Google Scholar 

  8. Belotti A, Ribolla R, Cancelli V et al (2021) Predictive role of diffusion-weighted whole-body MRI (DW-MRI) imaging response according to MY-RADS criteria after autologous stem cell transplantation in patients with multiple myeloma and combined evaluation with MRD assessment by flow cytometry. Cancer Med 10:5859–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Greer MC, Voss SD, States LJ (2017) Pediatric cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res 23:e6–e13

    Article  PubMed  Google Scholar 

  10. Greer MC (2018) Imaging of cancer predisposition syndromes. Pediatr Radiol 48:1364–1375

    Article  PubMed  Google Scholar 

  11. Radbruch A, Paech D, Gassenmaier S et al (2021) 1.5 vs 3 tesla magnetic resonance imaging: a review of favorite clinical applications for both field strengths — part 2. Investig Radiol 56:692–704

    Article  Google Scholar 

  12. Chaturvedi A (2021) Pediatric skeletal diffusion-weighted magnetic resonance imaging: part 1 — technical considerations and optimization strategies. Pediatr Radiol 51:1562–1574

    Article  PubMed  Google Scholar 

  13. Chavhan GB, Babyn PS (2011) Whole-body MR imaging in children: principles, technique, current applications, and future directions. Radiographics 31:1757–1772

    Article  PubMed  Google Scholar 

  14. Mohan S, Moineddin R, Chavhan GB (2015) Pediatric whole-body magnetic resonance imaging: intra-individual comparison of technical quality, artifacts, and fixed structure visibility at 1.5 and 3 T. Indian J Radiol Imaging 25:353–358

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schick F, Pieper CC, Kupczyk P et al (2021) 1.5 vs 3 tesla magnetic resonance imaging: a review of favorite clinical applications for both field strengths — part 1. Investig Radiol 56:680–691

    Article  Google Scholar 

  16. Block J (2022) Closed MRI vs. open MRI vs. wide-bore MRI. Block Imaging. info.blockimaging.com/bid/102182/closed-bore-mri-vs-open-mri-vs-wide-bore-mri. Accessed 19 Jul 2022

  17. Gottumukkala RV, Gee MS, Hampilos PJ et al (2019) Current and emerging roles of whole-body MRI in evaluation of pediatric cancer patients. Radiographics 39:516–534

    Article  PubMed  Google Scholar 

  18. Lauenstein TC, Goehde SC, Herborn CU et al (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233:139–148

    Article  PubMed  Google Scholar 

  19. Takahara T, Kwee T, Kibune S et al (2010) Whole-body MRI using a sliding table and repositioning surface coil approach. Eur Radiol 20:1366–1373

    Article  PubMed  Google Scholar 

  20. Weckbach S, Michaely HJ, Stemmer A et al (2010) Comparison of a new whole-body continuous-table-movement protocol versus a standard whole-body MR protocol for the assessment of multiple myeloma. Eur Radiol 20:2907–2916

    Article  CAS  PubMed  Google Scholar 

  21. Goo HW (2015) Whole-body MRI in children: current imaging techniques and clinical applications. Korean J Radiol 16:973–985

    Article  PubMed  PubMed Central  Google Scholar 

  22. Behzadnezhad B, Collick BD, Behdad N et al (2018) Dielectric properties of 3D-printed materials for anatomy specific 3D-printed MRI coils. J Magn Reson 289:113–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zamarayeva AM, Gopalan K, Corea JR et al (2021) Custom, spray coated receive coils for magnetic resonance imaging. Sci Rep 11:2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Corea JR, Flynn AM, Lechene B et al (2016) Screen-printed flexible MRI receive coils. Nat Commun 7:10839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Greer M-LC (2020) Whole-body MR imaging. In: Lee EY (ed) Pediatric body MRI: a comprehensive, multidisciplinary guide, 1st edn. Springer Nature, Switzerland, pp 453–481

    Chapter  Google Scholar 

  26. Andronikou S, Mendes da Costa T, Hussien M et al (2019) Radiological diagnosis of chronic recurrent multifocal osteomyelitis using whole-body MRI-based lesion distribution patterns. Clin Radiol 74:e733–e737

    Article  Google Scholar 

  27. Andronikou S, Kraft JK, Offiah AC et al (2020) Whole-body MRI in the diagnosis of paediatric CNO/CRMO. Rheumatology 59:2671–2680

    Article  PubMed  Google Scholar 

  28. Lecouvet FE, Van Nieuwenhove S, Jamar F et al (2018) Whole-body MR imaging: the novel, “intrinsically hybrid,” approach to metastases, myeloma, lymphoma, in bones and beyond. PET Clin 13:505–522

    Article  PubMed  Google Scholar 

  29. Malattia C, Tolend M, Mazzoni M et al (2020) Current status of MR imaging of juvenile idiopathic arthritis. Best Pract Res Clin Rheumatol 34:101629

    Article  PubMed  Google Scholar 

  30. Aguet J, Gill N, Tassos VP et al (2022) Contrast-enhanced body magnetic resonance angiography: how we do it. Pediatr Radiol 52:262–270

    Article  PubMed  Google Scholar 

  31. Chavhan GB, Lam CZ, Greer MC et al (2020) Magnetic resonance lymphangiography. Radiol Clin N Am 58:693–706

    Article  PubMed  Google Scholar 

  32. States LJ, Reid JR (2020) Whole-body PET/MRI applications in pediatric oncology. AJR Am J Roentgenol 215:713–725

    Article  PubMed  Google Scholar 

  33. Aghighi M, Pisani LJ, Sun Z et al (2016) Speeding up PET/MR for cancer staging of children and young adults. Eur Radiol 26:4239–4248

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jaimes C, Kirsch JE, Gee MS (2018) Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging. Pediatr Radiol 48:1197–1208

    Article  PubMed  Google Scholar 

  35. Kozak BM, Jaimes C, Kirsch J et al (2020) MRI techniques to decrease imaging times in children. Radiographics 40:485–502

    Article  PubMed  Google Scholar 

  36. Harrington SG, Jaimes C, Weagle KM et al (2022) Strategies to perform magnetic resonance imaging in infants and young children without sedation. Pediatr Radiol 52:374–381

    Article  PubMed  Google Scholar 

  37. Tabari A, Machado-Rivas F, Kirsch JE et al (2021) Performance of simultaneous multi-slice accelerated diffusion-weighted imaging for assessing focal renal lesions in pediatric patients with tuberous sclerosis complex. Pediatr Radiol 51:77–85

    Article  PubMed  Google Scholar 

  38. Pasoglou V, Michoux N, Larbi A et al (2018) Whole body MRI and oncology: recent major advances. Br J Radiol 91:20170664

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pasoglou V, Van Nieuwenhove S, Peeters F et al (2021) 3D whole-body MRI of the musculoskeletal system. Semin Musculoskelet Radiol 25:441–454

    Article  PubMed  Google Scholar 

  40. Ferjaoui R, Cherni MA, Boujnah S et al (2021) Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images. Comput Methods Prog Biomed 209:106320

    Article  Google Scholar 

  41. Villani A, Shore A, Wasserman JD et al (2016) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol 17:1295–1305

    Article  CAS  PubMed  Google Scholar 

  42. Antoon JW, Potisek NM, Lohr JA (2015) Pediatric fever of unknown origin. Pediatr Rev 36:380–390

    Article  PubMed  Google Scholar 

  43. Lindsay AJ, Delgado J, Jaramillo D et al (2019) Extended field of view magnetic resonance imaging for suspected osteomyelitis in very young children: is it useful? Pediatr Radiol 49:379–386

    Article  PubMed  Google Scholar 

  44. Littooij AS, Kwee TC, Barber I et al (2014) Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol 24:1153–1165

    Article  PubMed  Google Scholar 

  45. Verhagen MV, Menezes LJ, Neriman D et al (2021) (18)F-FDG PET/MRI for staging and interim response assessment in pediatric and adolescent Hodgkin lymphoma: a prospective study with (18)F-FDG PET/CT as the reference standard. J Nucl Med 62:1524–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar J, Seith A, Kumar A et al (2008) Whole-body MR imaging with the use of parallel imaging for detection of skeletal metastases in pediatric patients with small-cell neoplasms: comparison with skeletal scintigraphy and FDG PET/CT. Pediatr Radiol 38:953–962

    Article  PubMed  Google Scholar 

  47. Ishiguchi H, Ito S, Kato K et al (2018) Diagnostic performance of (18)F-FDG PET/CT and whole-body diffusion-weighted imaging with background body suppression (DWIBS) in detection of lymph node and bone metastases from pediatric neuroblastoma. Ann Nucl Med 32:348–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Siegel MJ, Acharyya S, Hoffer FA et al (2013) Whole-body MR imaging for staging of malignant tumors in pediatric patients: results of the American College of Radiology Imaging Network 6660 trial. Radiology 266:599–609

    Article  PubMed  PubMed Central  Google Scholar 

  49. Papaioannou G, McHugh K (2005) Neuroblastoma in childhood: review and radiological findings. Cancer Imaging 5:116–127

    Article  PubMed  PubMed Central  Google Scholar 

  50. Casali PG, Bielack S, Abecassis N et al (2018) Bone sarcomas: ESMO-PaedCan-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 29:iv79–iv95

  51. Scheer M, Dantonello T, Brossart P et al (2018) Importance of whole-body imaging with complete coverage of hands and feet in alveolar rhabdomyosarcoma staging. Pediatr Radiol 48:648–657

    Article  PubMed  Google Scholar 

  52. Morimoto A, Oh Y, Nakamura S et al (2017) Inflammatory serum cytokines and chemokines increase associated with the disease extent in pediatric Langerhans cell histiocytosis. Cytokine 97:73–79

    Article  CAS  PubMed  Google Scholar 

  53. Thacker NH, Abla O (2019) Pediatric Langerhans cell histiocytosis: state of the science and future directions. Clin Adv Hematol Oncol 17:122–131

    PubMed  Google Scholar 

  54. Durno C, Ercan AB, Bianchi V et al (2021) Survival benefit for individuals with constitutional mismatch repair deficiency undergoing surveillance. J Clin Oncol 39:2779–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Foulkes WD, Kamihara J, Evans DGR et al (2017) Cancer surveillance in Gorlin syndrome and rhabdoid tumor predisposition syndrome. Clin Cancer Res 23:e62–e67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fruhwald MC, Nemes K, Boztug H et al (2021) Current recommendations for clinical surveillance and genetic testing in rhabdoid tumor predisposition: a report from the SIOPE Host Genome Working Group. Familial Cancer 20:305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Friedman DN, Hsu M, Moskowitz CS et al (2020) Whole-body magnetic resonance imaging as surveillance for subsequent malignancies in preadolescent, adolescent, and young adult survivors of germline retinoblastoma: an update. Pediatr Blood Cancer 67:e28389

    Article  PubMed  PubMed Central  Google Scholar 

  58. Anupindi SA, Bedoya MA, Lindell RB et al (2015) Diagnostic performance of whole-body MRI as a tool for cancer screening in children with genetic cancer-predisposing conditions. AJR Am J Roentgenol 205:400–408

    Article  PubMed  Google Scholar 

  59. Al-Sarhani H, Gottumukkala RV, Grasparil ADS 2nd et al (2022) Screening of cancer predisposition syndromes. Pediatr Radiol 52:401–417

    Article  PubMed  Google Scholar 

  60. McBride KA, Ballinger ML, Schlub TE et al (2017) Psychosocial morbidity in TP53 mutation carriers: is whole-body cancer screening beneficial? Familial Cancer 16:423–432

    Article  CAS  PubMed  Google Scholar 

  61. Bougeard G, Renaux-Petel M, Flaman JM et al (2015) Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 33:2345–2352

    Article  CAS  PubMed  Google Scholar 

  62. Ballinger ML, Best A, Mai PL et al (2017) Baseline surveillance in Li-Fraumeni syndrome using whole-body magnetic resonance imaging: a meta-analysis. JAMA Oncol 3:1634–1639

    Article  PubMed  Google Scholar 

  63. Tak CR, Biltaji E, Kohlmann W et al (2019) Cost-effectiveness of early cancer surveillance for patients with Li-Fraumeni syndrome. Pediatr Blood Cancer 66:e27629

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lecouvet FE (2016) Whole-body MR imaging: musculoskeletal applications. Radiology 279:345–365

    Article  PubMed  Google Scholar 

  65. Else T, Greenberg S, Fishbein L (1993) Hereditary paraganglioma-pheochromocytoma syndromes. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews, Seattle

  66. Rednam SP, Erez A, Druker H et al (2017) Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e68–e75

    Article  CAS  PubMed  Google Scholar 

  67. Tabori U, Hansford JR, Achatz MI et al (2017) Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res 23:e32–e37

    Article  PubMed  Google Scholar 

  68. Aronson M, Colas C, Shuen A et al (2022) Diagnostic criteria for constitutional mismatch repair deficiency (CMMRD): recommendations from the International Consensus Working Group. J Med Genet 59:318–327

    Article  CAS  PubMed  Google Scholar 

  69. Evans DGR, Salvador H, Chang VY et al (2017) Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 1. Clin Cancer Res 23:e46–e53

    Article  PubMed  Google Scholar 

  70. Ahlawat S, Fayad LM, Khan MS et al (2016) Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis. Neurology 87:S31–S39

    Article  PubMed  PubMed Central  Google Scholar 

  71. Weiss PF (2012) Diagnosis and treatment of enthesitis-related arthritis. Adolesc Health Med Ther 2012:67–74

    PubMed  Google Scholar 

  72. Aquino MR, Tse SM, Gupta S et al (2015) Whole-body MRI of juvenile spondyloarthritis: protocols and pictorial review of characteristic patterns. Pediatr Radiol 45:754–762

    Article  PubMed  Google Scholar 

  73. Kan JH (2013) Juvenile idiopathic arthritis and enthesitis-related arthropathies. Pediatr Radiol 43:S172–S180

    Article  PubMed  Google Scholar 

  74. Sheybani EF, Khanna G, White AJ et al (2013) Imaging of juvenile idiopathic arthritis: a multimodality approach. Radiographics 33:1253–1273

    Article  PubMed  Google Scholar 

  75. Al-Dajani, Alexander K, Carpio O et al (2021) Establishing a whole body MRI repository for chronic non-bacterial osteomyelitis (CNO). International Pediatric Radiology 8th Conjoint Congress, Rome. Pediatr Radiology 51:S125–S126

  76. Chaturvedi A (2021) Pediatric skeletal diffusion-weighted magnetic resonance imaging, part 2: current and emerging applications. Pediatr Radiol 51:1575–1588

    Article  PubMed  Google Scholar 

  77. Buch K, Thuesen ACB, Brons C et al (2019) Chronic non-bacterial osteomyelitis: a review. Calcif Tissue Int 104:544–553

    Article  CAS  PubMed  Google Scholar 

  78. Eutsler EP, Khanna G (2016) Whole-body magnetic resonance imaging in children: technique and clinical applications. Pediatr Radiol 46:858–872

    Article  PubMed  Google Scholar 

  79. Damasio MB, Magnaguagno F, Stagnaro G (2016) Whole-body MRI: non-oncological applications in paediatrics. Radiol Med 121:454–461

    Article  PubMed  Google Scholar 

  80. von Kalle T, Heim N, Hospach T et al (2013) Typical patterns of bone involvement in whole-body MRI of patients with chronic recurrent multifocal osteomyelitis (CRMO). Rofo 185:655–661

    Article  Google Scholar 

  81. Davis JT, Kwatra N, Schooler GR (2016) Pediatric whole-body MRI: a review of current imaging techniques and clinical applications. J Magn Reson Imaging 44:783–793

    Article  PubMed  Google Scholar 

  82. Malattia C, Damasio MB, Madeo A et al (2014) Whole-body MRI in the assessment of disease activity in juvenile dermatomyositis. Ann Rheum Dis 73:1083–1090

    Article  PubMed  Google Scholar 

  83. Quijano-Roy S, Avila-Smirnow D, Carlier RY et al (2012) Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord 22:S68–S84

    Article  PubMed  Google Scholar 

  84. Cardamone M, Darras BT, Ryan MM (2008) Inherited myopathies and muscular dystrophies. Semin Neurol 28:250–259

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary-Louise C. Greer.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraus, M.S., Yousef, A.A., Cote, S.L. et al. Improving protocols for whole-body magnetic resonance imaging: oncological and inflammatory applications. Pediatr Radiol 53, 1420–1442 (2023). https://doi.org/10.1007/s00247-022-05478-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-022-05478-5

Keywords