Skip to main content

Advertisement

Log in

Paediatric gastrointestinal and hepatobiliary radiology: why do we need subspecialists, and what is new?

  • Minisymposium: Specialist Pediatric Radiology — Does it add value?
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

We present the case for subspecialisation in paediatric gastrointestinal and hepato-pancreatico-biliary radiology. We frame the discussion around a number of questions: What is different about the paediatric patient and paediatric gastrointestinal system? What does the radiologist need to do differently? And finally, what can be translated from these subspecialty areas into everyday practice? We cover conditions that the sub-specialist might encounter, focusing on entities such as inflammatory bowel disease and hepatic vascular anomalies. We also highlight novel imaging techniques that are a focus of research in the subspecialties, including contrast-enhanced ultrasound, MRI motility, magnetisation transfer factor, and magnetic resonance elastography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cassel CK, Reuben DB (2011) Specialization, subspecialization, and subsubspecialization in internal medicine. N Engl J Med 364:1169–1173

    Article  CAS  PubMed  Google Scholar 

  2. Smith GG, Thrall JH, Pentecost MJ et al (2009) Subspecialization in radiology and radiation oncology. J Am Coll Radiol 6:147–159

    Article  PubMed  Google Scholar 

  3. Wells JCK (2014) Toward body composition reference data for infants, children, and adolescents. Adv Nutr 5:320S–329S

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yoon HM, Suh CH, Kim JR et al (2017) Diagnostic performance of sonographic features in patients with biliary atresia: a systematic review and meta-analysis. J Ultrasound Med 36:2027–2038

    Article  Google Scholar 

  5. Chavhan GB, Shelmerdine S, Jhaveri K, Babyn PS (2016) Liver MR imaging in children: current concepts and technique. Radiographics 36:1517–1532

    Article  PubMed  Google Scholar 

  6. Nehra D, Goldstein AM (2011) Intestinal malrotation: varied clinical presentation from infancy through adulthood. Surgery 149:386–393

    Article  PubMed  Google Scholar 

  7. Konuş ÖL, Özdemir A, Akkaya A et al (1998) Normal liver, spleen, and kidney dimensions in neonates, infants, and children: evaluation with sonography. AJR Am J Roentgenol 171:1693–1698

    Article  PubMed  Google Scholar 

  8. Hernanz-Schulman M, Ambrosino MM, Freeman PC, Quinn CB (1995) Common bile duct in children: sonographic dimensions. Radiology 195:193–195

    Article  CAS  PubMed  Google Scholar 

  9. Mesquita RD, Sousa M, Vilaverde F, Cardoso R (2018) Abernethy malformation: beware in cases of unexplained hepatic encephalopathy in adults — case report and review of the relevant literature. BJR Case Rep 4:20170054

    PubMed  Google Scholar 

  10. Chira RI, Calauz A, Manole S et al (2017) Unusual discovery after an examination for abdominal pain: Abernethy 1b malformation and liver adenomatosis. A case report. J Gastrointest Liver Dis 26:85–88

  11. Sorkin T, Strautnieks S, Foskett P et al (2016) Multiple β-catenin mutations in hepatocellular lesions arising in Abernethy malformation. Hum Pathol 53:153–158

    Article  CAS  PubMed  Google Scholar 

  12. Vade A, Lim-Dunham J, Iqbal N (2001) Imaging of the ductus venosus in neonates: from patency to closure. J Ultrasound Med 20:681–687

    Article  CAS  PubMed  Google Scholar 

  13. Chaturvedi A, Klionsky NB, Saul D (2018) Ultrasound with Doppler evaluation of congenital hepatic vascular shunts. Pediatr Radiol 48:1658–1671

    Article  PubMed  Google Scholar 

  14. Barber JL, Maclachlan J, Planche K et al (2017) There is good agreement between MR enterography and bowel ultrasound with regards to disease location and activity in paediatric inflammatory bowel disease. Clin Radiol 72:590–597

    Article  CAS  PubMed  Google Scholar 

  15. Miller CR (2007) Ultrasound in the assessment of the acute abdomen in children: its advantages and its limitations. Ultrasound Clin 2:525–540

    Article  Google Scholar 

  16. Cornes JS (1965) Number, size, and distribution of Peyer’s patches in the human small intestine: Part I the development of Peyer’s patches. Gut 6:225–229

  17. Barber JL, Zambrano-Perez A, Olsen ØE et al (2018) Detecting inflammation in inflammatory bowel disease — how does ultrasound compare to magnetic resonance enterography using standardised scoring systems? Pediatr Radiol 48:843–851

    Article  PubMed  Google Scholar 

  18. Chung EM, Lattin GE, Cube R et al (2011) From the archives of the AFIP: pediatric liver masses: radiologic-pathologic correlation Part 2. Malignant tumors. Radiographics 31:483–507

  19. Chung EM, Cube R, Lewis RB, Conran RM (2010) From the archives of the AFIP: pediatric liver masses: radiologic-pathologic correlation Part 1. Benign tumors. Radiographics 30:801–826

  20. Sieders E, Peeters PMJG, Ten Vergert EM et al (2000) Early vascular complications after pediatric liver transplantation. Liver Transpl 6:326–332

    Article  CAS  PubMed  Google Scholar 

  21. Feier FH, Da Fonseca EA, Seda-Neto J, Chapchap P (2015) Biliary complications after pediatric liver transplantation: risk factors, diagnosis and management. World J Hepatol 7:2162–2170

    Article  PubMed  PubMed Central  Google Scholar 

  22. Horvat N, Marcelino ASZ, Horvat JV et al (2017) Pediatric liver transplant: techniques and complications. Radiographics 37:1612–1631

    Article  PubMed  Google Scholar 

  23. Gore RM, Pickhardt PJ, Mortele KJ et al (2017) Management of incidental liver lesions on CT: a white paper of the ACR incidental findings committee. J Am Coll Radiol 14:1429–1437

    Article  PubMed  Google Scholar 

  24. Adeyiga AO, Lee EY, Eisenberg RL (2012) Focal hepatic masses in pediatric patients. AJR Am J Roentgenol 199:W422–W440

    Article  PubMed  Google Scholar 

  25. Malviya S, Voepel-Lewis T, Eldevik OP et al (2000) Sedation and general anaesthesia in children undergoing MRI and CT: adverse events and outcomes. Br J Anaesth 84:743–748

    Article  CAS  PubMed  Google Scholar 

  26. Davidson AJ, Disma N, De Graaff JC et al (2016) Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet 387:239–250

    Article  PubMed  Google Scholar 

  27. Nardone B, Saddleton E, Laumann AE et al (2014) Pediatric nephrogenic systemic fibrosis is rarely reported: a RADAR report. Pediatr Radiol 44:173–180

    Article  PubMed  Google Scholar 

  28. Blumfield E, Swenson DW, Iyer RS, Stanescu AL (2019) Gadolinium-based contrast agents — review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients. Pediatr Radiol 49:448–457

    Article  PubMed  Google Scholar 

  29. Neri E, Bali MA, Ba-Ssalamah A et al (2016) ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol 26:921–931

    Article  CAS  PubMed  Google Scholar 

  30. Meyers AB, Towbin AJ, Serai S et al (2011) Characterization of pediatric liver lesions with gadoxetate disodium. Pediatr Radiol 41:1183–1197

    Article  PubMed  Google Scholar 

  31. Lauenstein T, Ramirez-Garrido F, Kim YH et al (2015) Nephrogenic systemic fibrosis risk after liver magnetic resonance imaging with gadoxetate disodium in patients with moderate to severe renal impairment: results of a prospective, open-label, multicenter study. Investig Radiol 50:416–422

    Article  Google Scholar 

  32. Barber JL, Shah N, Watson TA (2018) Early onset inflammatory bowel disease — what the radiologist needs to know. Eur J Radiol 106:173–182

    Article  CAS  PubMed  Google Scholar 

  33. Sadigh S, Chopra M, Sury MR et al (2017) Paediatric magnetic resonance enteroclysis under general anaesthesia — initial experience. Pediatr Radiol 47:877–883

    Article  PubMed  Google Scholar 

  34. Mathews JD, Forsythe AV, Brady Z et al (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360

    Article  PubMed  PubMed Central  Google Scholar 

  35. De Gonzalez AB, Salotti JA, McHugh K et al (2016) Relationship between paediatric CT scans and subsequent risk of leukaemia and brain tumours: assessment of the impact of underlying conditions. Br J Cancer 114:388–394

    Article  PubMed Central  Google Scholar 

  36. Singh S, Kalra MK, Shenoy-Bhangle AS et al (2012) Radiation dose reduction with hybrid iterative reconstruction for pediatric CT. Radiology 263:537–546

    Article  PubMed  Google Scholar 

  37. Nievelstein RAJ, Robben SGF, Blickman JG (2011) Hepatobiliary and pancreatic imaging in children — techniques and an overview of non-neoplastic disease entities. Pediatr Radiol 41:55–75

    Article  PubMed  Google Scholar 

  38. Rozell JM, Catanzano T, Polansky SM et al (2014) Primary liver tumors in pediatric patients: proper imaging technique for diagnosis and staging. Semin Ultrasound CT MRI 35:382–393

    Article  Google Scholar 

  39. Ntoulia A, Back SJ, Shellikeri S et al (2018) Contrast-enhanced voiding urosonography (ceVUS) with the intravesical administration of the ultrasound contrast agent Optison™ for vesicoureteral reflux detection in children: a prospective clinical trial. Pediatr Radiol 48:216–226

    Article  PubMed  Google Scholar 

  40. Claudon M, Dietrich CF, Choi BI et al (2013) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver — update 2012. A WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultrasound Med Biol 39:187–210

    Article  PubMed  Google Scholar 

  41. Claudon M, Cosgrove D, Albrecht T et al (2008) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) — update 2008. Ultraschall Med 29:28–44

    Article  CAS  PubMed  Google Scholar 

  42. Strobel D, Seitz K, Blank W et al (2008) Contrast-enhanced ultrasound for the characterization of focal liver lesions — diagnostic accuracy in clinical practice (DEGUM multicenter trial). Ultraschall Med 29:499–505

    Article  CAS  PubMed  Google Scholar 

  43. Chiorean L, Cui XW, Tannapfel A et al (2015) Benign liver tumors in pediatric patients — review with emphasis on imaging features. World J Gastroenterol 21:8541–8561

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jacob J, Deganello A, Sellars ME et al (2013) Contrast enhanced ultrasound (CEUS) characterization of grey-scale sonographic indeterminate focal liver lesions in pediatric practice. Ultraschall Med 34:529–540

    Article  CAS  PubMed  Google Scholar 

  45. Bonini G, Pezzotta G, Morzenti C et al (2007) Contrast-enhanced ultrasound with SonoVue in the evaluation of postoperative complications in pediatric liver transplant recipients. J Ultrasound 10:99–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rennert J, Dornia C, Georgieva M et al (2012) Identification of early complications following liver transplantation using contrast enhanced ultrasound (CEUS). First results. J Gastrointest Liver Dis 21:407–412

    Google Scholar 

  47. Valentino M, Serra C, Pavlica P et al (2008) Blunt abdominal trauma: diagnostic performance of contrast-enhanced US in children — initial experience. Radiology 246:903–909

    Article  PubMed  Google Scholar 

  48. Menichini G, Sessa B, Trinci M et al (2015) Accuracy of contrast-enhanced ultrasound (CEUS) in the identification and characterization of traumatic solid organ lesions in children: a retrospective comparison with baseline US and CE-MDCT. Radiol Med 120:989–1001

    Article  PubMed  Google Scholar 

  49. Medellin-Kowalewski A, Wilkens R, Wilson A et al (2016) Quantitative contrast-enhanced ultrasound parameters in Crohn disease: their role in disease activity determination with ultrasound. AJR Am J Roentgenol 206:64–73

    Article  PubMed  Google Scholar 

  50. Fontanilla T, Cañas T, Macia A et al (2014) Normal values of liver shear wave velocity in healthy children assessed by acoustic radiation force impulse imaging using a convex probe and a linear probe. Ultrasound Med Biol 40:470–477

    Article  PubMed  Google Scholar 

  51. Yoon JH, Lee JM, Han JK, Choi BI (2014) Shear wave elastography for liver stiffness measurement in clinical sonographic examinations: evaluation of intraobserver reproducibility, technical failure, and unreliable stiffness measurements. J Ultrasound Med 33:437–447

    Article  PubMed  Google Scholar 

  52. Dillman JR, Heider A, Bilhartz JL et al (2015) Ultrasound shear wave speed measurements correlate with liver fibrosis in children. Pediatr Radiol 45:1480–1488

    Article  PubMed  PubMed Central  Google Scholar 

  53. Franchi-Abella S, Corno L, Gonzales E et al (2016) Feasibility and diagnostic accuracy of supersonic shear-wave elastography for the assessment of liver stiffness and liver fibrosis in children: a pilot study of 96 patients. Radiology 278:554–562

    Article  PubMed  Google Scholar 

  54. Özkan MB, Bilgici MC, Eren E et al (2017) Role of point shear wave elastography in the determination of the severity of fibrosis in pediatric liver diseases with pathologic correlations. J Ultrasound Med 36:2337–2344

    Article  PubMed  Google Scholar 

  55. Fierbinteanu-Braticevici C, Andronescu D, Usvat R et al (2009) Acoustic radiation force imaging sonoelastography for noninvasive staging of liver fibrosis. World J Gastroenterol 15:5525–5532

    Article  PubMed  PubMed Central  Google Scholar 

  56. Summers JA, Radhakrishnan M, Morris E et al (2017) Virtual Touch™ quantification to diagnose and monitor liver fibrosis in Hepatitis B and Hepatitis C: a NICE medical technology guidance. Appl Health Econ Health Policy 15:139–154

  57. Hanquinet S, Courvoisier DS, Rougemont AL et al (2016) Acoustic radiation force impulse sonography in assessing children with biliary atresia for liver transplantation. Pediatr Radiol 46:1011–1016

    Article  PubMed  Google Scholar 

  58. Zhou L-Y, Jiang H, Shan Q-Y et al (2017) Liver stiffness measurements with supersonic shear wave elastography in the diagnosis of biliary atresia: a comparative study with grey-scale US. Eur Radiol 27:3474–3484

    Article  PubMed  Google Scholar 

  59. Dillman JR, Stidham RW, Higgins PDR et al (2013) US elastography-derived shear wave velocity helps distinguish acutely inflamed from fibrotic bowel in a Crohn disease animal model. Radiology 267:757–766

    Article  PubMed  Google Scholar 

  60. Taylor SA, Mallett S, Bhatnagar G et al (2018) Diagnostic accuracy of magnetic resonance enterography and small bowel ultrasound for the extent and activity of newly diagnosed and relapsed Crohn’s disease (METRIC): a multicentre trial. Lancet Gastroenterol Hepatol 3:548–558

    Article  PubMed  PubMed Central  Google Scholar 

  61. Décarie P-O, Lepanto L, Billiard J-S et al (2011) Fatty liver deposition and sparing: a pictorial review. Insights Imaging 2:533–538

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ream JM, Dillman JR, Adler J et al (2013) MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation. Pediatr Radiol 43:1077–1085

    Article  PubMed  Google Scholar 

  63. Watson T, Calder A, Barber JL (2018) Quantitative bowel apparent diffusion coefficient measurements in children with inflammatory bowel disease are not reproducible. Clin Radiol 73:574–579

    Article  CAS  PubMed  Google Scholar 

  64. Khachab F, Loundou A, Roman C et al (2018) Can diffusion weighting replace gadolinium enhancement in magnetic resonance enterography for inflammatory bowel disease in children? Pediatr Radiol 48:1432–1440

    Article  PubMed  Google Scholar 

  65. Parikh T, Drew SJ, Lee VS et al (2008) Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 246:812–822

    Article  PubMed  Google Scholar 

  66. Caro-Domínguez P, Gupta AA, Chavhan GB (2018) Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors? Pediatr Radiol 48:85–93

    Article  PubMed  Google Scholar 

  67. Froehlich JM, Waldherr C, Stoupis C et al (2010) MR motility imaging in Crohn’s disease improves lesion detection compared with standard MR imaging. Eur Radiol 20:1945–1951

    Article  PubMed  Google Scholar 

  68. Menys A, Puylaert C, Tutein Nolthenius CE et al (2018) Quantified terminal ileal motility during MR enterography as a biomarker of Crohn disease activity: prospective multi-institution study. Radiology 289:428–435

    Article  PubMed  Google Scholar 

  69. Plumb AA, Menys A, Russo E et al (2015) Magnetic resonance imaging-quantified small bowel motility is a sensitive marker of response to medical therapy in Crohn’s disease. Aliment Pharmacol Ther 42:343–355

    Article  CAS  PubMed  Google Scholar 

  70. Menys A, Hoad C, Spiller R et al (2019) Spatio-temporal motility MRI analysis of the stomach and colon. Neurogastroenterol Motil 31:e13557

    Article  PubMed  Google Scholar 

  71. Menys A, Keszthelyi D, Fitzke H et al (2017) A magnetic resonance imaging study of gastric motor function in patients with dyspepsia associated with Ehlers-Danlos syndrome-hypermobility type: a feasibility study. Neurogastroenterol Motil 29:e13090

    Article  CAS  Google Scholar 

  72. Adler J, Swanson SD, Rahal K et al (2011) Magnetization transfer MRI detects change in bowel wall fibrosis with TNFα antagonist therapy in a rat model of Crohn’s disease. Gastroenterology 140:S761

    Article  Google Scholar 

  73. Li X, Mao R, Huang S et al (2018) Characterization of degree of intestinal fibrosis in patients with Crohn disease by using magnetization transfer MR imaging. Radiology 287:494–503

    Article  PubMed  Google Scholar 

  74. Donato H, França M, Candelária I, Caseiro-Alves F (2017) Liver MRI: from basic protocol to advanced techniques. Eur J Radiol 93:30–39

    Article  PubMed  Google Scholar 

  75. Henninger B, Alustiza J, Garbowski M, Gandon Y (2020) Practical guide to quantification of hepatic iron with MRI. Eur Radiol 30:383–393

    Article  PubMed  Google Scholar 

  76. Dillman JR, Trout AT, Costello EN et al (2018) Quantitative liver MRI–biopsy correlation in pediatric and young adult patients with nonalcoholic fatty liver disease: can one be used to predict the other? AJR Am J Roentgenol 210:166–174

    Article  PubMed  Google Scholar 

  77. Tang A, Tan J, Sun M et al (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267:422–431

    Article  PubMed  PubMed Central  Google Scholar 

  78. Verlhac S, Morel M, Bernaudin F et al (2015) Liver iron overload assessment by MRI R2∗ relaxometry in highly transfused pediatric patients: an agreement and reproducibility study. Diagn Interv Imaging 96:259–264

    Article  CAS  PubMed  Google Scholar 

  79. Petitclerc L, Gilbert G, Nguyen BN, Tang A (2017) Liver fibrosis quantification by magnetic resonance imaging. Top Magn Reson Imaging 26:229–241

    Article  PubMed  PubMed Central  Google Scholar 

  80. Serai SD, Towbin AJ, Podberesky DJ (2012) Pediatric liver MR elastography. Dig Dis Sci 57:2713–2719

    Article  PubMed  Google Scholar 

  81. Xanthakos SA, Podberesky DJ, Serai SD et al (2014) Use of magnetic resonance elastography to assess hepatic fibrosis in children with chronic liver disease. J Pediatr 164:186–188

    Article  PubMed  Google Scholar 

  82. Joshi M, Dillman JR, Towbin AJ et al (2017) MR elastography: high rate of technical success in pediatric and young adult patients. Pediatr Radiol 47:838–843

    Article  PubMed  Google Scholar 

  83. Schechter T, Perez-Albuerne E, Lin TF et al (2018) Veno-occlusive disease after high-dose busulfan–melphalan in neuroblastoma. Bone Marrow Transplant 55:531–537

    Article  PubMed  CAS  Google Scholar 

  84. McCarville MB, Hoffer FA, Howard SC et al (2001) Hepatic veno-occlusive disease in children undergoing bone-marrow transplantation: usefulness of sonographic findings. Pediatr Radiol 31:102–105

    Article  CAS  PubMed  Google Scholar 

  85. Lassau N, Auperin A, Leclere J et al (2002) Prognostic value of Doppler-ultrasonography in hepatic veno-occlusive disease. Transplantation 74:60–66

    Article  PubMed  Google Scholar 

  86. Fontanilla T, Hernando CG, Claros JCV et al (2011) Acoustic radiation force impulse elastography and contrast-enhanced sonography of sinusoidal obstructive syndrome (veno-occlusive disease): preliminary results. J Ultrasound Med 30:1593–1598

    Article  PubMed  Google Scholar 

  87. Lubner MG, Menias CO, Agrons M et al (2017) Imaging of abdominal and pelvic manifestations of graft-versus-host disease after hematopoietic stem cell transplant. AJR Am J Roentgenol 209:33–45

    Article  PubMed  Google Scholar 

  88. Brodoefel H, Bethge W, Vogel M et al (2010) Early and late-onset acute GvHD following hematopoietic cell transplantation: CT features of gastrointestinal involvement with clinical and pathological correlation. Eur J Radiol 73:594–600

    Article  CAS  PubMed  Google Scholar 

  89. Nishida M, Shigematsu A, Sato M et al (2015) Ultrasonographic evaluation of gastrointestinal graft-versus-host disease after hematopoietic stem cell transplantation. Clin Transpl 29:697–704

    Article  Google Scholar 

  90. Sebire NJ, Malone M, Risdon RA, Ramsay AD (2005) Epstein-Barr virus-associated lymphoproliferative disorder presenting as apparently isolated gastrointestinal lesions in childhood. Pediatr Dev Pathol 8:88–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom A. Watson.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, T.A., Barber, J. & Woodley, H. Paediatric gastrointestinal and hepatobiliary radiology: why do we need subspecialists, and what is new?. Pediatr Radiol 51, 554–569 (2021). https://doi.org/10.1007/s00247-020-04778-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-020-04778-y

Keywords

Navigation