Skip to main content

Advertisement

Log in

Dual-energy lung perfusion and ventilation CT in children

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Dual-energy thoracic CT provides two key insights into lung physiology, i.e. regional perfusion and ventilation, and has been actively investigated to find clinically relevant applications since the introduction of dual-source CT. This functional information provided by dual-energy thoracic CT is supplementary because high-resolution thoracic anatomy is entirely preserved on dual-energy thoracic CT. In addition, virtual non-contrast imaging can omit pre-contrast scanning. In this respect, dual-energy CT imaging technique is at least dose-neutral, which is a critical requirement for paediatric imaging. In this review, imaging protocols, analysis methods, clinical applications and diagnostic pitfalls of dual-energy thoracic CT for evaluating lung perfusion and ventilation in children are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  2. Chiro GD, Brooks RA, Kessler RM et al (1979) Tissue signatures with dual-energy CT. Radiology 131:521–523

    PubMed  CAS  Google Scholar 

  3. Kang MJ, Park CM, Lee CH et al (2010) Dual-energy CT: clinical applications in various pulmonary diseases. Radiographics 30:685–698

    Article  Google Scholar 

  4. Ko JP, Brandman S, Stember J et al (2012) Dual-energy CT: concepts, performance, and thoracic applications. J Thorac Imaging 27:7–22

    Article  PubMed  Google Scholar 

  5. Geyer LL, Scherr M, Körner M et al (2011) Imaging of acute pulmonary embolism using dual energy CT system with rapid kVp switching: initial results. Eur J Radiol. doi:10.1016/j.ejrad

  6. Boll DT, Merkle EM, Paulson EK et al (2008) Calcified vascular plaque specimens: assessment with cardiac dual-energy multidetector CT in anthropomorphically moving heart phantom. Radiology 249:119–126

    Article  PubMed  Google Scholar 

  7. Yeh BM, Shepherd JA, Wang ZJ et al (2009) Dual-energy and low-kVp CT in the abdomen. AJR 193:47–54

    Article  PubMed  Google Scholar 

  8. Bauer RW, Kramer S, Renker M et al (2011) Dose and image quality at CT pulmonary angiography-comparison of first and second generation dual-energy CT and 64-slice CT. Eur Radiol 21:2139–2147

    Article  PubMed  Google Scholar 

  9. Primak AN, Ramirez Giraldo JC, Liu X et al (2009) Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys 36:1359–1369

    Article  PubMed  CAS  Google Scholar 

  10. Petersilka M, Bruder H, Krauss B et al (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368

    Article  PubMed  Google Scholar 

  11. Holmes DR 3rd, Fletcher JG, Apel A et al (2008) Evaluation of non-linear blending in dual-energy CT. Eur J Radiol 68:409–413

    Article  PubMed  Google Scholar 

  12. Yang DH, Goo HW (2008) Pediatric 16-slice CT protocol: radiation dose and image quality. J Korean Radiol Soc 59:333–347

    Google Scholar 

  13. Goo HW (2011) Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol 41:839–847

    Article  PubMed  Google Scholar 

  14. Goo HW (2012) CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol 13:1–11

    Article  PubMed  Google Scholar 

  15. Greess H, Wolf H, Baum U et al (2000) Dose reduction in CT by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 10:391–394

    Article  PubMed  CAS  Google Scholar 

  16. Goo HW, Suh DS (2006) Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol 36:344–351

    Article  PubMed  Google Scholar 

  17. Chae EJ, Song JW, Seo JB et al (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249:671–681

    Article  PubMed  Google Scholar 

  18. Krissak R, Henzler T, Reichert M et al (2010) Enhanced visualization of lung vessels for diagnosis of pulmonary embolism using dual energy CT angiography. Invest Radiol 45:341–346

    PubMed  Google Scholar 

  19. Goo HW (2010) Initial experience of dual-energy lung perfusion CT using a dual-source CT system in children. Pediatr Radiol 40:1536–1544

    Article  PubMed  Google Scholar 

  20. Henzler T, Meyer M, Reichert M et al (2012) Dual-energy CT angiography of the lungs: comparison of test bolus and bolus tracking techniques for the determination of scan delay. Eur J Radiol 81:132–138

    Article  PubMed  Google Scholar 

  21. Kerl JM, Bauer RW, Renker M et al (2011) Triphasic contrast injection improves evaluation of dual energy lung perfusion in pulmonary CT angiography. Eur J Radiol 80:e483–e487

    Article  PubMed  Google Scholar 

  22. Hoey ET, Mirsadraee S, Pepke-Zaba J et al (2011) Dual-energy CT angiography for assessment of regional pulmonary perfusion in patients with chronic thromboembolic pulmonary hypertension: initial experience. AJR 196:524–532

    Article  PubMed  Google Scholar 

  23. Chae EJ, Seo JB, Jang YM et al (2010) Dual-energy CT for assessment of the severity of acute pulmonary embolism: pulmonary perfusion defect score compared with CT angiographic obstruction score and right ventricular/left ventricular diameter ratio. AJR 194:604–610

    Article  PubMed  Google Scholar 

  24. Fink C, Johnson TR, Michaely HJ et al (2008) Dual-energy CT angiography of the lung in patients with suspected pulmonary embolism: initial results. Rofo 180:879–883

    PubMed  CAS  Google Scholar 

  25. Thieme SF, Becker CR, Hacker M et al (2008) Dual energy CT for the assessment of lung perfusion—correlation to scintigraphy. Eur J Radiol 68:369–374

    Article  PubMed  Google Scholar 

  26. Thieme SF, Graute V, Nikolaou K et al (2012) Dual energy CT lung perfusion imaging—correlation with SPECT/CT. Eur J Radiol 81:360–365

    Article  PubMed  CAS  Google Scholar 

  27. Zhang LJ, Lu L, Bi J et al (2010) Detection of pulmonary embolism comparison between dual energy CT and MR angiography in a rabbit model. Acad Radiol 17:1550–1559

    Article  PubMed  Google Scholar 

  28. Zhang LJ, Zhao YE, Wu SY et al (2009) Pulmonary embolism detection with dual-energy CT: experimental study of dual-source CT in rabbits. Radiology 252:61–70

    Article  PubMed  Google Scholar 

  29. Zhang LJ, Chai X, Wu SY et al (2009) Detection of pulmonary embolism by dual energy CT: correlation with perfusion scintigraphy and histopathological findings in rabbits. Eur Radiol 19:2844–2854

    Article  PubMed  Google Scholar 

  30. Pansini V, Remy-Jardin M, Faivre JB et al (2009) Assessment of lobar perfusion in smokers according to the presence and severity of emphysema: preliminary experience with dual-energy CT angiography. Eur Radiol 19:2834–2843

    Article  PubMed  Google Scholar 

  31. Ferda J, Ferdova E, Mirka H et al (2011) Pulmonary imaging using dual-energy CT, a role of the assessment of iodine and air distribution. Eur J Radiol 77:287–293

    Article  PubMed  Google Scholar 

  32. Goo HW, Kim HJ (2006) Detection of air trapping on inspiratory and expiratory phase images obtained by 0.3-second cine CT in the lungs of free-breathing young children. AJR 187:1019–1023

    Article  PubMed  Google Scholar 

  33. Thieme SF, Hoegl S, Nikolaou K et al (2010) Pulmonary ventilation and perfusion imaging with dual-energy CT. Eur Radiol 20:2882–2889

    Article  PubMed  Google Scholar 

  34. Bauer RW, Kerl JM, Weber E et al (2011) Lung perfusion analysis with dual-energy CT in patients with suspected pulmonary embolism—influence of window settings on the diagnosis of underlying pathologies of perfusion defects. Eur J Radiol 80:e476–e482

    Article  PubMed  Google Scholar 

  35. Zhang LJ, Wang ZJ, Zhou CS et al (2012) Evaluation of pulmonary embolism in pediatric patients with nephrotic syndrome with dual energy CT pulmonary angiography. Acad Radiol 19:341–348

    Article  PubMed  Google Scholar 

  36. Thieme SF, Johnson TR, Reiser MF et al (2010) Dual-energy lung perfusion CT: a novel pulmonary functional imaging method. Semin Ultrasound CT MR 31:301–308

    Article  PubMed  Google Scholar 

  37. Zhang LJ, Yang GF, Zhao YE et al (2009) Detection of pulmonary embolism using dual-energy CT and correlation with cardiovascular measurements: a preliminary study. Acta Radiol 50:892–901

    Article  PubMed  Google Scholar 

  38. Kim BH, Seo JB, Chae EJ et al (2012) Analysis of perfusion defects by causes other than acute pulmonary thromboembolism on contrast-enhanced dual-energy CT in consecutive 537 patients. Eur J Radiol 81:e647–e652

    Article  PubMed  Google Scholar 

  39. Kang MJ, Park CM, Lee CH et al (2010) Focal iodine defects on color-coded iodine perfusion maps of dual-energy pulmonary CT angiography images: a potential diagnostic pitfall. AJR 195:W325–W330

    Article  PubMed  Google Scholar 

  40. Chae EJ, Seo JB, Goo HW et al (2008) Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 248:615–624

    Article  PubMed  Google Scholar 

  41. Goo HW, Chae EJ, Seo JB et al (2008) Xenon ventilation CT using a dual-source dual-energy technique: dynamic ventilation abnormality in a child with bronchial atresia. Pediatr Radiol 38:1113–1116

    Article  PubMed  Google Scholar 

  42. Chae EJ, Seo JB, Lee J et al (2010) Xenon ventilation imaging using dual-energy CT in asthmatics: initial experience. Invest Radiol 45:354–361

    PubMed  Google Scholar 

  43. Goo HW, Yang DH, Hong SJ et al (2010) Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol 40:1490–1497

    Article  PubMed  Google Scholar 

  44. Park EA, Goo JM, Park SJ et al (2010) Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique. Radiology 256:985–997

    Article  PubMed  Google Scholar 

  45. Goo HW, Yang DH, Kim N et al (2011) Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience. Korean J Radiol 12:25–33

    Article  PubMed  Google Scholar 

  46. Goo HW, Yu J (2011) Redistributed regional ventilation after the administration of a bronchodilator demonstrated on xenon-inhaled dual-energy CT in a patient with asthma. Korean J Radiol 12:386–389

    Article  PubMed  Google Scholar 

  47. Honda N, Osada H, Watanabe W et al (2012) Imaging of ventilation with dual-energy CT during breath hold after single vital-capacity inspiration of stable xenon. Radiology 262:262–268

    Article  PubMed  Google Scholar 

  48. Hachulla AL, Pontana F, Wemeau-Stervinou L et al (2012) Krypton ventilation imaging using dual-energy CT in chronic obstructive pulmonary disease patients: initial experience. Radiology 263:253–259

    Article  PubMed  Google Scholar 

  49. Chae EJ, Seo JB, Kim N et al (2010) Collateral ventilation in a canine model with bronchial obstruction: assessment with xenon-enhanced dual-energy CT. Radiology 255:790–798

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Woo Goo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goo, H.W. Dual-energy lung perfusion and ventilation CT in children. Pediatr Radiol 43, 298–307 (2013). https://doi.org/10.1007/s00247-012-2465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2465-4

Keywords

Navigation