Skip to main content

Advertisement

Log in

MR urography in children

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

MR urography represents the next step in the evolution of uroradiology in children by combining superb anatomic imaging with quantitative functional evaluation in a single examination that does not use ionizing radiation. MR imaging has inherently greater soft-tissue contrast than other imaging techniques. When used in conjunction with dynamic scanning after administration of a contrast agent, it provides non-invasive analysis of the perfusion, concentration and excretion of each kidney. The purpose of this review is to outline our experience with more than 500 MR urograms in children. We outline our technique in detail, showing how we calculate differential renal function and how we assess concentration and excretion in the different regions of the kidney. We show that the dynamic contrast-enhanced data can be processed to yield quantitative measures of individual kidney GFR. In the clinical section we show how MR urography adds unique aspects to the anatomic evaluation of the urinary tract, and by combining the anatomic information with functional information, how we assess hydronephrosis and obstructive uropathy, congenital malformations, pyelonephritis and renal scarring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Grattan-Smith JD, Perez-Bayfield MR, Jones RA, et al (2003) MR imaging of kidneys: functional evaluation using F-15 perfusion imaging. Pediatr Radiol 33:293–304

    PubMed  Google Scholar 

  2. Jones RA, Easley K, Little SB, et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part 1 functional assessment. AJR 185:1598–1607

    Article  PubMed  Google Scholar 

  3. Jones RA, Perez-Brayfield MR, Kirsch AJ, et al (2004) Renal transit time with MR urography in children. Radiology 233:41–50

    Article  PubMed  Google Scholar 

  4. McDaniel BB, Jones RA, Scherz H, et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part 2 anatomic and functional assessment of uteropelvic junction obstruction. AJR 185:1608–1614

    Article  PubMed  Google Scholar 

  5. Perez-Brayfield MR, Kirsch AJ, Jones RA, et al (2003) A prospective study comparing ultrasound, nuclear scintigraphy and dynamic contrast enhanced magnetic resonance imaging in the evaluation of hydronephrosis. J Urol 170:1330–1334

    Article  PubMed  Google Scholar 

  6. Avni EF, Bali MA, Regnault M, et al (2002) MR urography in children. Eur J Radiol 43:154–166

    Article  PubMed  Google Scholar 

  7. Borthne A, Nordshus T, Reiseter T, et al (1999) MR urography: the future gold standard in paediatric urogenital imaging? Pediatr Radiol 29:694–701

    Article  PubMed  CAS  Google Scholar 

  8. Borthne A, Pierre-Jerome C, Nordshus T, et al (2000) MR urography in children: current status and future development. Eur Radiol 10:503–511

    Article  PubMed  CAS  Google Scholar 

  9. Nolte-Ernsting CC, Adam GB, Gunther RW (2001) MR urography: examination techniques and clinical applications. Eur Radiol 11:355–372

    Article  PubMed  CAS  Google Scholar 

  10. Riccabona M (2004) Pediatric MRU—its potential and its role in the diagnostic work-up of upper urinary tract dilatation in infants and children. World J Urol 22:79–87

    PubMed  Google Scholar 

  11. Riccabona M, Riccabona M, Koen M, et al (2004) Magnetic resonance urography: a new gold standard for the evaluation of solitary kidneys and renal buds? J Urol 171:1642–1646

    Article  PubMed  Google Scholar 

  12. Riccabona M, Ruppert-Kohlmayr A, Ring E, et al (2004) Potential impact of pediatric MR urography on the imaging algorithm in patients with a functional single kidney. AJR 183:795–800

    PubMed  Google Scholar 

  13. Rohrschneider WK, Becker K, Hoffend J, et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. II. Findings in experimentally induced ureteric stenosis. Pediatr Radiol 30:523–532

    Article  PubMed  CAS  Google Scholar 

  14. Rohrschneider WK, Haufe S, Clorius JH, et al (2003) MR to assess renal function in children. Eur Radiol 13:1033–1045

    Article  PubMed  Google Scholar 

  15. Rohrschneider WK, Haufe S, Wiesel M, et al (2002) Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static-dynamic MR urography: findings in kidneys with a single collecting system. Radiology 224:683–694

    Article  PubMed  Google Scholar 

  16. Rohrschneider WK, Hoffend J, Becker K, et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. I. Evaluation of the normal status in an animal model. Pediatr Radiol 30:511–522

    Article  PubMed  CAS  Google Scholar 

  17. Brown SC, Upsdell SM, O’Reilly PH (1992) The importance of renal function in the interpretation of diuresis renography. Br J Urol 69:121–125

    PubMed  CAS  Google Scholar 

  18. Goodman LS, Gilman A, Gilman AG (1990) The pharmacological basis of therapeutics. Pergamon Press, New York

    Google Scholar 

  19. Huang AJ, Lee VS, Rusinek H (2004) Functional renal MR imaging. Magn Reson Imaging Clin N Am 12:469–486, vi

    Article  PubMed  Google Scholar 

  20. Lee VS, Rusinek H, Noz ME, et al (2003) Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience. Radiology 227:289–294

    Article  PubMed  Google Scholar 

  21. Taylor J, Summers PE, Keevil SF, et al (1997) Magnetic resonance renography: optimisation of pulse sequence parameters and Gd-DTPA dose, and comparison with radionuclide renography. Magn Reson Imaging 15:637–649

    Article  PubMed  CAS  Google Scholar 

  22. The HS, Ang ES, Wong WC, et al (2003) MR renography using a dynamic gradient-echo sequence and low-dose gadopentetate dimeglumine as an alternative to radionuclide renography. AJR 181:441–450

    Google Scholar 

  23. Heuer R, Sommer G, Shortliffe LD (2003) Evaluation of renal growth by magnetic resonance imaging and computerized tomography volumes. J Urol 170:1659–1663; discussion 1663

    Article  PubMed  Google Scholar 

  24. van den Dool SW, Wasser MN, de Fijter JW, et al (2005) Functional renal volume: quantitative analysis at gadolinium-enhanced MR angiography—feasibility study in healthy potential kidney donors. Radiology 236:189–195

    Article  PubMed  Google Scholar 

  25. Bakker J, Olree M, Kaatee R, et al (1999) Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging. Radiology 211:623–628

    PubMed  CAS  Google Scholar 

  26. Krier JD, Ritman EL, Bajzer Z, et al (2001) Noninvasive measurement of concurrent single-kidney perfusion, glomerular filtration, and tubular function. Am J Physiol Renal Physiol 281:F630–F638

    PubMed  CAS  Google Scholar 

  27. Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging 18:714–725

    Article  PubMed  Google Scholar 

  28. Rutland MD (1979) A single injection technique for subtraction of blood background in 131I-hippuran renograms. Br J Radiol 52:134–137

    Article  PubMed  CAS  Google Scholar 

  29. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    PubMed  CAS  Google Scholar 

  30. Peters AM (1994) Graphical analysis of dynamic data: the Patlak-Rutland plot. Nucl Med Commun 15:669–672

    Article  PubMed  CAS  Google Scholar 

  31. Hackstein N, Kooijman H, Tomaselli S, et al (2005) Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imaging 22:406–414

    Article  PubMed  Google Scholar 

  32. Pennington DJ, Lonergan GJ, Flack CE, et al (1996) Experimental pyelonephritis in piglets: diagnosis with MR imaging. Radiology 201:199–205

    PubMed  CAS  Google Scholar 

  33. Rusinek H, Lee VS, Johnson G (2001) Optimal dose of Gd-DTPA in dynamic MR studies. Magn Reson Med 46:312–316

    Article  PubMed  CAS  Google Scholar 

  34. Csaicsich D, Greenbaum LA, Aufricht C (2004) Upper urinary tract: when is obstruction obstruction? Curr Opin Urol 14:213–217

    Article  PubMed  Google Scholar 

  35. Eskild-Jensen A, Gordon I, Piepsz A, et al (2005) Congenital unilateral hydronephrosis: a review of the impact of diuretic renography on clinical treatment. J Urol 173:1471–1476

    Article  PubMed  Google Scholar 

  36. Peters CA (1995) Urinary tract obstruction in children. J Urol 154:1874–1883; discussion 1883–1884

    Article  PubMed  CAS  Google Scholar 

  37. O’Reilly PH (2002) Obstructive uropathy. Q J Nucl Med 46:295–303

    PubMed  CAS  Google Scholar 

  38. Klahr S (2001) Urinary tract obstruction. Semin Nephrol 21:133–145

    Article  PubMed  CAS  Google Scholar 

  39. Wen JG, Frokiaer J, Jorgensen TM, et al (1999) Obstructive nephropathy: an update of the experimental research. Urol Res 27:29–39

    Article  PubMed  CAS  Google Scholar 

  40. Koff SA, Binkovitz L, Coley B, et al (2005) Renal pelvis volume during diuresis in children with hydronephrosis: implications for diagnosing obstruction with diuretic renography. J Urol 174:303–307

    Article  PubMed  CAS  Google Scholar 

  41. Smith BG, Metwalli AR, Leach J, et al (2004) Congenital midureteral stricture in children diagnosed with antenatal hydronephrosis. Urology 64:1014–1019

    Article  PubMed  Google Scholar 

  42. Avni FE, Nicaise N, Hall M, et al (2001) The role of MR imaging for the assessment of complicated duplex kidneys in children: preliminary report. Pediatr Radiol 31:215–223

    Article  PubMed  CAS  Google Scholar 

  43. Hellstrom M, Hjalmas K, Jacobsson B, et al (1985) Normal ureteral diameter in infancy and childhood. Acta Radiol Diagn (Stockh) 26:433–439

    CAS  Google Scholar 

  44. Campbell MF, Walsh PC, Retik AB (2002) Campbell’s urology. Saunders, Philadelphia

    Google Scholar 

  45. Ichikawa I, Kuwayama F, Pope JC 4th, et al (2002) Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 61:889–898

    Article  PubMed  Google Scholar 

  46. Mackie GG, Stephens FD (1975) Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J Urol 114:274–280

    PubMed  CAS  Google Scholar 

  47. Pope JC 4th, Brock JW 3rd, Adams MC, et al (1999) How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol 10:2018–2028

    PubMed  Google Scholar 

  48. Glassberg KI, Stephens FD, Lebowitz RL, et al (1987) Renal dysgenesis and cystic disease of the kidney: a report of the Committee on Terminology, Nomenclature and Classification, Section on Urology, American Academy of Pediatrics. J Urol 138:1085–1092

    PubMed  CAS  Google Scholar 

  49. Stock JA, Wilson D, Hanna MK (1998) Congenital reflux nephropathy and severe unilateral fetal reflux. J Urol 160:1017–1018

    Article  PubMed  CAS  Google Scholar 

  50. Anderson PA, Rickwood AM (1991) Features of primary vesicoureteric reflux detected by prenatal sonography. Br J Urol 67:267–271

    Article  PubMed  CAS  Google Scholar 

  51. Najmaldin A, Burge DM, Atwell JD (1990) Reflux nephropathy secondary to intrauterine vesicoureteric reflux. J Pediatr Surg 25:387–390

    Article  PubMed  CAS  Google Scholar 

  52. Yeung CK, Godley ML, Dhillon HK, et al (1997) The characteristics of primary vesico-ureteric reflux in male and female infants with pre-natal hydronephrosis. Br J Urol 80:319–327

    PubMed  CAS  Google Scholar 

  53. Polito C, La Manna A, Rambaldi PF, et al (2000) High incidence of a generally small kidney and primary vesicoureteral reflux. J Urol 164:479–482

    Article  PubMed  CAS  Google Scholar 

  54. Risdon RA (1993) The small scarred kidney in childhood. Pediatr Nephrol 7:361–364

    Article  PubMed  CAS  Google Scholar 

  55. Kavanagh EC, Ryan S, Awan A, et al (2005) Can MRI replace DMSA in the detection of renal parenchymal defects in children with urinary tract infections? Pediatr Radiol 35:275–281

    Article  PubMed  Google Scholar 

  56. Lonergan GJ, Pennington DJ, Morrison JC, et al (1998) Childhood pyelonephritis: comparison of gadolinium-enhanced MR imaging and renal cortical scintigraphy for diagnosis. Radiology 207:377–384

    PubMed  CAS  Google Scholar 

  57. Weiser AC, Amukele SA, Leonidas JC, et al (2003) The role of gadolinium enhanced magnetic resonance imaging for children with suspected acute pyelonephritis. J Urol 169:2308–2311

    Article  PubMed  Google Scholar 

  58. Montet X, Ivancevic MK, Belenger J, et al (2003) Noninvasive measurement of absolute renal perfusion by contrast medium-enhanced magnetic resonance imaging. Invest Radiol 38:584–592

    Article  PubMed  CAS  Google Scholar 

  59. Prasad PV, Chen Q, Goldfarb JW, et al (1997) Breath-hold R2* mapping with a multiple gradient-recalled echo sequence: application to the evaluation of intrarenal oxygenation. J Magn Reson Imaging 7:1163–1165

    Article  PubMed  CAS  Google Scholar 

  60. Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94:3271–3275

    PubMed  CAS  Google Scholar 

  61. Grenier N, Basseau F, Ries M, et al (2003) Functional MRI of the kidney. Abdom Imaging 28:164–175

    Article  PubMed  CAS  Google Scholar 

  62. Ries M, Basseau F, Tyndal B, et al (2003) Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imag 17:104–113

    Article  Google Scholar 

  63. Muller MF, Prasad PV, Bimmler D, et al (1994) Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology 193:711–715

    PubMed  CAS  Google Scholar 

  64. Yamada I, Aung W, Himeno Y, et al (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623

    PubMed  CAS  Google Scholar 

  65. Ries M, Jones RA, Basseau F, et al (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imag 14:42–49

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Damien Grattan-Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grattan-Smith, J.D., Jones, R.A. MR urography in children. Pediatr Radiol 36, 1119–1132 (2006). https://doi.org/10.1007/s00247-006-0222-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-006-0222-2

Keywords

Navigation