Skip to main content

Advertisement

Log in

Identification of Novel Congenital Heart Disease Candidate Genes Using Chromosome Microarray

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

While the majority of patients have isolated heart disease, congenital heart disease (CHD) may be associated with other congenital anomalies or syndromes. Our institution utilizes chromosomal microarray (CMA) to identify chromosomal abnormalities, specifically copy number variations (CNVs). While CNVs have been associated with CHD, their direct impact on cardiac development remains unclear. This study sought to identify potential novel CHD candidate genes by comparing CNVs present in our institution’s CHD population with those already recognized in the literature. A list of candidate genes was compiled from recent medical literature that utilized CMA. Records from neonatal cases at our institution over 10 years were reviewed. Genes identified from CMAs were compared with those reported in the literature and cross-referenced with the Online Mendelian Inheritance in Man catalog. We identified 375 CNVs reported in patients with CHD. At our institution between 2005 and 2015, 307 neonates with CHD had CMA. Of these, 77 patients (25%) had CNVs containing 832 unique candidate genes. 49 patients (16%) had isolated CHD with 353 candidate genes expressed within the CNVs, many of which were previously reported. However, there were 16 unique candidate genes identified that have been expressed with heart structure of the mouse knock-out models. Our findings demonstrate a high incidence of abnormal genes identified by CMA in CHD patients, including many CNVs of “unknown clinical significance”. We conclude that a portion of these CNVs (including 16 genes expressed in the heart of the mouse knock-out models) could be candidate genes involved in CHD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CHD:

Congenital heart disease

CMA:

Chromosomal microarray analysis

CNVs:

Copy number variations

FISH:

Fluorescence in situ hybridization

HLHS:

Hypoplastic left heart syndrome

STAT:

Society of Thoracic Surgeons and the European Association for Cardiothoracic Surgery

TOF:

Tetralogy of Fallot

References

  1. Go AS, Mozaffarian D, Roger VL et al (2013) Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:E6–E245

    Article  PubMed  Google Scholar 

  2. van der Linde D, Konings EEM, Slager MA et al (2011) Birth prevalence of congenital heart disease worldwide a systemic review and meta-analysis. J Am Coll Cardiol 58:2241–2247

    Article  PubMed  Google Scholar 

  3. Ferencz C, Rubin JD, Loffredo CA, Magee CM (1993) The epidemiology of congenital heart disease: the Baltimore-Washington Infant Study 1981–1989. Perspectives in pediatric cardiology, vol 4. Futura Publishing Co Inc, Mt Kisco, pp 33–73

  4. Jenkins KJ, Correa A, Feinstein JA et al (2007) Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115:2995–3014

    Article  PubMed  Google Scholar 

  5. Pierpont ME, Basson CT, Benson DW et al (2007) Genetic basis for congenital heart defects: current knowledge. Circulation 115(23):3015–3038

    Article  PubMed  Google Scholar 

  6. Richards AA, Garg V (2010) Genetics of congenital heart disease. Curr Cardiol Rev 6(2):91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernstein D (2016) Evaluation of the cardiovascular system. In: Behrman RE, Kliegman RM, Jenson HB (eds) Nelson textbook of pediatrics, 20th edn. Saunders, Philadelphia, pp 2163–2170

    Google Scholar 

  8. Tomita-Mitchell A, Mahnke DK, Struble CA et al (2012) Human gene copy number spectra analysis in congenital heart malformations. Physiol Genom 44(9):518–541

    Article  CAS  Google Scholar 

  9. Soemedi R, Wilson IJ, Bentham J et al (2012) Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet 91(3):489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xing L, Martinez-Fernandez A, Hartjes KA et al (2014) Transcriptional atlas of cardiogenesis maps congenital heart disease interactome. Physiol Genom 46(13):482–495

    Article  Google Scholar 

  11. Andersen TA, Troelsen Kde L, Larsen LA (2014) Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci 71(8):1327–1352

    Article  CAS  PubMed  Google Scholar 

  12. Hitz MP, Lemieux-Perreault LP, Marshall C et al (2012) Rare copy number variants contribute to congenital left-sided heart disease. PLoS Genet 8(9):e1002903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ware SM, Jefferies JL (2012) New Genetic Insights into congenital heart disease. J Clin Exp Cardiol. Suppl 8:003. doi:10.4172/2155-9880.S8-003

  14. Fahed A, Gelb B, Seidman J, Seidman C (2013) Genetics of congenital heart disease: the glass half empty. Circ Res 112(4):707–720

    Article  CAS  PubMed  Google Scholar 

  15. Greenway SC, Pereira AC, Lin JC et al (2009) De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet 41(8):931–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carey AS, Liang L, Edwards J et al (2013) Effect of copy number variants on outcomes for infants with single ventricle heart defects. Circ Cardiovasc Genet 6(5):444–451

    Article  PubMed  PubMed Central  Google Scholar 

  17. Geng J, Picker J, Zheng Z et al (2014) Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genom 15:1127

    Article  Google Scholar 

  18. Syrmou A, Tzetis M, Fryssira H et al (2013) Array comparative genomic hybridization as a clinical diagnostic tool in syndromic and nonsyndromic congenital heart disease. Pediatr Res 73(6):772–776

    Article  CAS  PubMed  Google Scholar 

  19. Warburton D, Ronemus M, Kline J et al (2014) The contribution of de novo and rare inherited copy number changes to congenital heart disease in an unselected sample of children with conotruncal defects or hypoplastic left heart disease. Hum Genet 133:11–27

    Article  PubMed  Google Scholar 

  20. Xie L, Chen JL, Zhang WZ et al (2014) Rare de novo copy number variants in patients with congenital pulmonary atresia. PLoS ONE 9(5):e96471

    Article  PubMed  PubMed Central  Google Scholar 

  21. Priest JR, Girirajan S, Vu TH, Olson A, Eichler EE, Portman MA (2012) Rare copy number variants in isolated sporadic and syndromic atrioventricular septal defects. Am J Med Genet Part A 158A(6):1279–1284

    Article  PubMed  PubMed Central  Google Scholar 

  22. Silversides CK, Lionel AC, Costain G et al (2012) Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. PLoS Genet 8(8):e1002843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goldmuntz E, Clark BJ, Mitchell LE et al (1998) Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol 32(2):492–498

    Article  CAS  PubMed  Google Scholar 

  24. Ewart AK, Jin W, Atkinson D, Morris CA, Keating MT (1994) Supravalvar aortic stenosis associated with a deletion disrupting the elastin gene. J Clin Invest 93(3):1071–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dietz HC, Cutting GR, Pyertiz RE et al (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352(6333):337–339

    Article  CAS  PubMed  Google Scholar 

  26. Basson CT, Bachnisky DR, Lin RC et al (1997) Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15(1):30–35

    Article  CAS  PubMed  Google Scholar 

  27. Kamisky EB, Kaul V, Paschall J et al (2011) An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet Med 13(9):777–784

    Article  Google Scholar 

  28. Riggs ER, Jackson L, Miller DT, Van Vooren S (2012) Phenotypic information in genomic variant databases enhances clinical care and research: the international standards for cytogenomic arrays consortium experience. Hum Mutat 33(5):787–796

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nussbaum RL, McInnes RR, Willard HF (2007) Thompson and Thompson genetics in medicine, 7th edn. Saunders/Elvsevier, Philadelphia, p 71

    Google Scholar 

  30. Greenway SC, Pereira AC, Lin JC et al (2009) De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet 41:931–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Botto LD, Lin AE, Riehle-Colarusso T et al (2007) National Birth Defects Prevention S. Seeking causes: classifying and evaluating congenital heart defects in etiologic studies. Birth Defects Res A Clin Mol Teratol 79(10):714–727

    Article  CAS  PubMed  Google Scholar 

  32. p11.2 deletion syndrome. Genetics Home Reference, US National Library of Medicine. https://ghr.nlm.nic.gov

  33. Zufferey F, Sherr EH, Beckmann ND et al (2012) A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders. J Med Genet 49:660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Girirajan S, Moeschler J, Rosenfeld J (2015 Feb 26) 16p12.2 Microdeletion. In: Pagon RA, Adam MP, Ardinger HH, et al. (eds). GeneReviews ® [Internet]. University of Washington, Seattle (WA), 1993–2016

  35. Lintas C, Picinelli C, Piras IS et al (2016) Xp22.33p22.12 duplication in a patient with intellectual disability and Dysmorphic facial features. Mol Syndromol 6(5):236–241

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cripe L, Andelfinger G, Martin LJ et al (2004) Bicuspid aortic valve is heritable. J Am Coll Cardiol 44:138–143

    Article  PubMed  Google Scholar 

  37. Hinton RB, Martin LJ, Tabangin ME et al (2007) Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol 50:1590–1595

    Article  PubMed  Google Scholar 

  38. McBrinde KL, Pignatelli R, Lewin H et al (2005) Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: segregation, multiplex relative risk, and heritability. Am J Med Genet A 134:180–186

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contribution of Ms. Bonnie Hughes for her assistance with the regulatory details in obtaining the IRB and Drs. Eleanor Ross and Denise Angst for their critical review of the manuscript.

Funding

No funding was secured for this study.

Authors Contribution

ES helped design the study, completed data collection, assisted with result interpretation, and drafted portions of the initial manuscript. JR provided content expertise, assisted in data collection, result interpretation, and critically reviewed manuscript. AHVB conceptualized and designed the study, supervised data collection, provided content expertise, interpreted results, and contributed to the manuscript creation. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Financial Disclosure

The authors have no financial relationships relevant to this article to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Van Bergen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanshen, E., Rosenberg, J. & Van Bergen, A.H. Identification of Novel Congenital Heart Disease Candidate Genes Using Chromosome Microarray. Pediatr Cardiol 39, 148–159 (2018). https://doi.org/10.1007/s00246-017-1741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-017-1741-3

Keywords

Navigation