Skip to main content

Advertisement

Log in

MiR-10a and MiR-10b Target the 3′-Untranslated Region of TBX5 to Repress Its Expression

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

As a well-known transcription factor, TBX5 is involved in embryonic cardiac development. Although TBX5 functions in a dose-dependent manner, the posttranscriptional regulation of human TBX5 is poorly understood. Thus, this study aimed to identify microRNAs that modulate TBX5 expression. Luciferase assays were used to screen miRNAs predicted to modulate TBX5 expression. Using quantitative reverse transcriptase-polymerase chain reaction and Western blot analysis, the authors found that miR-10a and miR-10b significantly repressed TBX5 expression and decreased TBX5 protein levels by targeting the TBX5 3′-untranslated region. In addition, miR-10a and miR-10b expression levels were respectively 2.77 and 3.51 times higher in the heart tissues of congenital heart disease patients than in healthy control subjects, suggesting that they are potential diagnostic biomarkers. In conclusion, the study results indicate that miR-10a and miR-10b inhibit TBX5 expression at the level of translation. Higher levels of miR-10a and miR-10b expression are associated with a higher risk of congenital heart defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE (1997) Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15:30–35

    Article  CAS  PubMed  Google Scholar 

  2. Boogerd CJ, Dooijes D, Ilgun A, Mathijssen IB, Hordijk R, van de Laar IM, Rump P, Veenstra-Knol HE, Moorman AF, Barnett P, Postma AV (2010) Functional analysis of novel TBX5 T-box mutations associated with Holt-Oram syndrome. Cardiovasc Res 88:130–139

    Article  CAS  PubMed  Google Scholar 

  3. Brown DD, Martz SN, Binder O, Goetz SC, Price BM, Smith JC, Conlon FL (2005) Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis. Development 132:553–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451:943–948

    Article  CAS  PubMed  Google Scholar 

  5. Bruneau BG, Logan M, Davis N, Levi T, Tabin CJ, Seidman JG, Seidman CE (1999) Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol 211:100–108

    Article  CAS  PubMed  Google Scholar 

  6. Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, Seidman JG (2001) A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106:709–721

    Article  CAS  PubMed  Google Scholar 

  7. Chiavacci E, Dolfi L, Verduci L, Meghini F, Gestri G, Evangelista AM, Wilson SW, Cremisi F, Pitto L (2012) MicroRNA 218 mediates the effects of Tbx5a overexpression on zebrafish heart development. PLoS One 7:e50536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cordes KR, Srivastava D (2009) MicroRNA regulation of cardiovascular development. Circ Res 104:724–732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fan C, Liu M, Wang Q (2003) Functional analysis of TBX5 missense mutations associated with Holt-Oram syndrome. J Biol Chem 278:8780–8785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, Matsuoka R, Cohen JC, Srivastava D (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447

    Article  CAS  PubMed  Google Scholar 

  11. Gruenauer-Kloevekorn C, Froster UG (2003) Holt-Oram syndrome: a new mutation in the TBX5 gene in two unrelated families. Ann Genet 46:19–23

    Article  PubMed  Google Scholar 

  12. Hassel D, Cheng P, White MP, Ivey KN, Kroll J, Augustin HG, Katus HA, Stainier DY, Srivastava D (2012) MicroRNA-10 regulates the angiogenic behavior of zebrafish and human endothelial cells by promoting vascular endothelial growth factor signaling. Circ Res 111:1421–1433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hatcher CJ, Goldstein MM, Mah CS, Delia CS, Basson CT (2000) Identification and localization of TBX5 transcription factor during human cardiac morphogenesis. Dev Dyn 219:90–95

    Article  CAS  PubMed  Google Scholar 

  14. Heinritz W, Moschik A, Kujat A, Spranger S, Heilbronner H, Demuth S, Bier A, Tihanyi M, Mundlos S, Gruenauer-Kloevekorn C, Froster UG (2005) Identification of new mutations in the TBX5 gene in patients with Holt-Oram syndrome. Heart 91:383–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I (2001) Tbx5 associates with Nk2–5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28:276–280

    Article  CAS  PubMed  Google Scholar 

  16. Kuhn DE, Nuovo GJ, Martin MM, Malana GE, Pleister AP, Jiang J, Schmittgen TD, Terry AV Jr, Gardiner K, Head E, Feldman DS, Elton TS (2008) Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts. Biochem Biophys Res Commun 370:473–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Latronico MV, Condorelli G (2009) MicroRNAs and cardiac pathology. Nat Rev Cardiol 6:419–429

    Article  PubMed  Google Scholar 

  18. Leptidis S, El Azzouzi H, Lok SI, de Weger R, Olieslagers S, Kisters N, Silva GJ, Heymans S, Cuppen E, Berezikov E, De Windt LJ, da Costa Martins P (2013) A deep sequencing approach to uncover the miRNOME in the human heart. PLoS One 8:e57800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Yi CH, Gebuhr T, Bullen PJ, Robson SC, Strachan T, Bonnet D, Lyonnet S, Young ID, Raeburn JA, Buckler AJ, Law DJ, Brook JD (1997) Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 15:21–29

    Article  PubMed  Google Scholar 

  20. Li J, Cao Y, Ma XJ, Wang HJ, Zhang J, Luo X, Chen W, Wu Y, Meng Y, Yuan Y, Ma D, Huang GY (2013) Roles of miR-1-1 and miR-181c in ventricular septal defects. Int J Cardiol 168(2):1441–1446

    Article  PubMed  Google Scholar 

  21. Liu N, Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18:510–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22:3242–3254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lund AH (2010) miR-10 in development and cancer. Cell Death Differ 17:209–214

    Article  CAS  PubMed  Google Scholar 

  24. Mori AD, Zhu Y, Vahora I, Nieman B, Koshiba-Takeuchi K, Davidson L, Pizard A, Seidman JG, Seidman CE, Chen XJ, Henkelman RM, Bruneau BG (2006) Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev Biol 297:566–586

    Article  CAS  PubMed  Google Scholar 

  25. Nigam V, Sievers HH, Jensen BC, Sier HA, Simpson PC, Srivastava D, Mohamed SA (2010) Altered microRNAs in bicuspid aortic valve: a comparison between stenotic and insufficient valves. J Heart Valve Dis 19:459–465

    PubMed Central  PubMed  Google Scholar 

  26. Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R, Reinhardt F, Liao R, Krieger M, Jaenisch R, Lodish HF, Blelloch R (2009) Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 105:585–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Reamon-Buettner SM, Borlak J (2004) TBX5 mutations in non-Holt-Oram syndrome (HOS) malformed hearts. Hum Mutat 24:104

    Article  PubMed  Google Scholar 

  28. Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111

    Article  CAS  PubMed  Google Scholar 

  29. Tada M, Smith JC (2001) T-targets: clues to understanding the functions of T-box proteins. Dev Growth Differ 43:1–11

    Article  CAS  PubMed  Google Scholar 

  30. Takeuchi JK, Ohgi M, Koshiba-Takeuchi K, Shiratori H, Sakaki I, Ogura K, Saijoh Y, Ogura T (2003) Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development 130:5953–5964

    Article  CAS  PubMed  Google Scholar 

  31. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Xu J, Hu Z, Xu Z, Gu H, Yi L, Cao H, Chen J, Tian T, Liang J, Lin Y, Qiu W, Ma H, Shen H, Chen Y (2009) Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum Mutat 30:1231–1236

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:303–317

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Songshan Jiang for providing miRNAs expression plasmids and Professor Duan Ma for providing the normal heart tissues. This work was supported by the 973 Program (2013CB945401) and grants from the National Science Fund for the National Natural Science Foundation of China (81170147) to Yonghao Gui, grants from the National Science Fund for the National Natural Science Foundation of China (81300126) to Feng Wang, grants from the 973 Program (2012CB944604, 2013CB945300) and the National Natural Science Foundation of China (31000542) to Xueyan Yang, and grants from the National Natural Science Foundation of China (81100116) to Mei Chong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hao Gui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 30 kb)

Supplementary material 2 (PDF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Yang, XY., Zhao, JY. et al. MiR-10a and MiR-10b Target the 3′-Untranslated Region of TBX5 to Repress Its Expression. Pediatr Cardiol 35, 1072–1079 (2014). https://doi.org/10.1007/s00246-014-0901-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-014-0901-y

Keywords

Navigation