Skip to main content
Log in

Accelerating Two Projection Methods via Perturbations with Application to Intensity-Modulated Radiation Therapy

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

Constrained convex optimization problems arise naturally in many real-world applications. One strategy to solve them in an approximate way is to translate them into a sequence of convex feasibility problems via the recently developed level set scheme and then solve each feasibility problem using projection methods. However, if the problem is ill-conditioned, projection methods often show zigzagging behavior and therefore converge slowly. To address this issue, we exploit the bounded perturbation resilience of the projection methods and introduce two new perturbations which avoid zigzagging behavior. The first perturbation is in the spirit of k-step methods and uses gradient information from previous iterates. The second uses the approach of surrogate constraint methods combined with relaxed, averaged projections. We apply two different projection methods in the unperturbed version, as well as the two perturbed versions, to linear feasibility problems along with nonlinear optimization problems arising from intensity-modulated radiation therapy (IMRT) treatment planning. We demonstrate that for all the considered problems the perturbations can significantly accelerate the convergence of the projection methods and hence the overall procedure of the level set scheme. For the IMRT optimization problems the perturbed projection methods found an approximate solution up to 4 times faster than the unperturbed methods while at the same time achieving objective function values which were 0.5 to 5.1% lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping. Math. Program. 168, 123–175 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bargetz, C., Reich, S., Zalas, R.: Convergence properties of dynamic string averaging projection methods in the presence of perturbations. Numer. Algorithms 77(1), 185–209 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  4. Bonacker, E., Gibali, A., Küfer, K.-H., Süss, P.: Speedup of lexicographic optimization by superiorization and its applications to cancer radiotherapy treatment. Inverse Probl. 33(4), 044012 (2017)

    Article  MathSciNet  Google Scholar 

  5. Borwein, J.M., Lindstrom, S.B., Sims, B., Schneider, A., Skerrit, M.P.: Dynamics of the Douglas–Rachford method for ellipses and \(p\)-spheres. Set-Valued Var. Anal. 26, 385–403 (2018)

    Article  MathSciNet  Google Scholar 

  6. Butnariu, D., Davidi, R., Herman, G.T., Kazantsev, I.G.: Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems. IEEE J. Sel. Top. Signal Process. 1, 540–547 (2007)

    Article  Google Scholar 

  7. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Springer, Berlin (2013)

    Book  Google Scholar 

  8. Censor, Y.: Superiorization and perturbation resilience of algorithms: a bibliography compiled and continuously updated. arXiv:1506.04219. http://math.haifa.ac.il/yair/bib-superiorization-censor.html. Last updated 27 May 2018

  9. Censor, Y.: Weak and strong superiorization: between feasibility-seeking and minimization. Analele Stiintifice Univ. Ovidius Constanta-Ser. Mat. 23, 41–54 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Censor, Y.: Can linear superiorization be useful for linear optimization problems? Inverse Probl. 33, 044006 (2017)

    Article  MathSciNet  Google Scholar 

  11. Censor, Y., Reem, D.: Zero-convex functions, perturbation resilience, and subgradient projections for feasibility-seeking methods. Math. Program. 152(1), 339–380 (2015)

    Article  MathSciNet  Google Scholar 

  12. Censor, Y., Zaslavski, A.J.: Strict Fejér monotonicity by superiorization of feasibility-seeking projection methods. J. Optim. Theory Appl. 165, 172–187 (2015)

    Article  MathSciNet  Google Scholar 

  13. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  14. Censor, Y., Elfving, T., Herman, G.T.: Averaging strings of sequential iterations for convex feasibility problems. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Studies in Computational Mathematics 8, pp. 101–113. Elsevier, Amsterdam (2001)

    Google Scholar 

  15. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26, 065008 (2010)

    Article  MathSciNet  Google Scholar 

  16. Censor, Y., Chen, W., Pajoohesh, H.: Finite convergence of a subgradient projections method with expanding controls. Appl. Math. Optim. 64, 273–285 (2011)

    Article  MathSciNet  Google Scholar 

  17. Censor, Y., Davidi, R., Herman, G.T., Schulte, R.W., Tetruashvili, L.: Projected subgradient minimization versus superiorization. J. Optim. Theory Appl. 160, 730–747 (2014)

    Article  MathSciNet  Google Scholar 

  18. Censor, Y., Herman, G.T., Jiang, M. (Editors): Superiorization: Theory and Applications, Inverse Problems, vol. 33, Special Issue (2017)

  19. Combettes, P.L.: Hilbertian convex feasibility problem: convergence of projection methods. Appl. Math. Optim. 35, 311–330 (1997)

    Article  MathSciNet  Google Scholar 

  20. Combettes, P.L.: On the numerical robustness of the parallel projection method in signal synthesis. IEEE Signal Process. Lett. 8(2), 45–47 (2001)

    Article  Google Scholar 

  21. De Pierro, A., Iusem, A.: A finitely convergent “row-action” method for the convex feasibility problem. Appl. Math. Optim. 17(1), 225–235 (1988)

    Article  MathSciNet  Google Scholar 

  22. Dong, Q.-L., Gibali, A., Jiang, D., Tang, Y.: Bounded perturbation resilience of extragradient-type methods and their applications. J. Inequal. Appl 2017(1), 280 (2017)

    Article  MathSciNet  Google Scholar 

  23. Dong, Q.-L., Gibali, A., Jiang, D., Ke, S.-H.: Convergence of projection and contraction algorithms with outer perturbations and their applications to sparse signals recovery. J. Fixed Point Theory Appl. 16, 16 (2018)

    Article  MathSciNet  Google Scholar 

  24. Dudek, R.: Iterative method for solving the linear feasibility problem. J. Optim. Theory Appl. 132(3), 401–410 (2007)

    Article  MathSciNet  Google Scholar 

  25. Franca, G., Robinson, D.P., Vidal, R.: Admm and accelerated admm as continuous dynamical systems. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning 80, pp. 1559–1567, PMLR, Stockholm (2018)

  26. Gardñuo, E., Herman, G.T.: Superiorization of the ML-EM algorithm. IEEE Trans. Nucl. Sci. 61, 162–172 (2014)

    Article  Google Scholar 

  27. Gibali, A., Küfer, K.-H., Reem, D., Süss, P.: A generalized projection-based scheme for solving convex constrained optimization problems. Comput. Optim. Appl. 70(3), 737–762 (2018)

    Article  MathSciNet  Google Scholar 

  28. Jin, W., Censor, Y., Jiang, M.: A heuristic superiorization-like approach to bioluminescence. In: International Federation for Medical and Biological Engineering (IFMBE) Proceedings, vol. 39, pp. 1026–1029 (2013)

  29. Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate o(\(1/k^{2}\)). Dokl. Akad. Nauk SSSR 269, 543–547 (1983)

    MathSciNet  Google Scholar 

  30. Niemierko, A.: Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med. Phys. 24, 103–110 (1997)

    Article  Google Scholar 

  31. Polyak, B.T.: Some mehtods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 5, 1–17 (1964)

    Article  Google Scholar 

  32. Romeijn, H., Dempsey, J., Li, J.: A unifying framework for multicriteria fluence map optimization models. Phys. Med. Biol. 49, 1991–2013 (2004)

    Article  Google Scholar 

  33. Salzo, S., Villa, S.: Inexact and accelerated proximal point algorithms. J. Convex Anal. 19, 1167–1192 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Shepard, D.M., Ferris, M.C., Olivera, G.H., Mackie, T.R.: Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev. 419, 721–744 (1999)

    Article  Google Scholar 

  35. Tian, C., Wang, F.: The contraction-proximal point algorithm with square-summable errors. J. Fixed Point Theory Appl. (2013). https://doi.org/10.1186/1687-1812-2013-93

  36. Wang, X.: Method of steepest descent and its applications. IEEE Microw. Wirel. Compon. Lett. 12, 24–26 (2008)

    Google Scholar 

  37. Yang, K., Murty, K.G.: New iterative methods for linear inequalities. J. Optim. Theory Appl. 72(1), 163–185 (1992)

    Article  MathSciNet  Google Scholar 

  38. Zhao, X., Ng, K.F., Li, C., Yao, J.-C.: Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems. Appl. Math. Optim. 78(3), 613–641 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to thank the editor and the anonymous referees for the thorough analysis and review, their comments and suggestions helped tremendously in improving the quality of this paper and made it suitable for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aviv Gibali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonacker, E., Gibali, A. & Küfer, KH. Accelerating Two Projection Methods via Perturbations with Application to Intensity-Modulated Radiation Therapy. Appl Math Optim 83, 881–914 (2021). https://doi.org/10.1007/s00245-019-09571-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09571-4

Keywords

Mathematics Subject Classification

Navigation