Skip to main content
Log in

A Stochastic Maximum Principle for General Mean-Field Systems

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and we extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, N.U., Ding, X.: Controlled McKean–Vlasov equations. Commun. Appl. Anal. 5(2), 183–206 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Bensoussan, A., Frehse, J., Yam, S.C.P.: Master equation in mean-field theorie, arXiv:1404.4150v1 (2014)

  3. Buckdahn, R., Djehiche, B., Li, J.: A general stochastic maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64(2), 197–216 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buckdahn, R., Djehiche, B., Li, J., Peng, S.: Mean-field backward stochastic differential equations. A limit approach. Ann. Probab. 37(4), 1524–1565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buckdahn, R., Li, J., Ma, J. (2016), A Mean-field Stochastic Control Problem with Partial Observations, submitted

  6. Buckdahn, R., Li, J., Peng, S.: Mean-field backward stochastic differential equations and related partial differential equations. Stoch. Proc. Appl. 119(10), 3133–3154 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buckdahn, R, Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated PDEs. Preprint, arXiv:1407.1215v1 (2014)

  8. Bahlali, K., Mezerdi, M., Mezerdi, B.: Existence of optimal controls for systems governed by mean-field stochastic differential equations, preprint (2014)

  9. Cardaliaguet, P.: Notes on Mean Field Games (from P.-L. Lions’ lectures at Collège de France). https://www.ceremade.dauphine.fr/~cardalia/ (2013)

  10. Cardaliaguet, P.: Weak solutions for first order mean field games with local coupling. http://hal.archives-ouvertes.fr/hal-00827957 (2013)

  11. Carnoma, R., Delarue, F., Lachapelle, A.: Control of McKean–Vlasov dynamics versus mean field games. Math. Financ. Econ. 7(2), 131–166 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carnoma, R., Delarue, F.: Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51(4), 2705–2734 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carmona, R., Delarue, F.: Forward-backward stochastic differential equations and controlled Mckean–Vlasov dynamics. Ann. Probab. 43(5), 2647–2700 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haussmann, U.G.: A Stochastic Maximum Principle for Optimal Control of Diffusions. Longman Scientific and Technical, Essex, U.K. (1986)

    MATH  Google Scholar 

  15. Lions, P.-L.: Cours au Collège de France : Théorie des jeu à champs moyens. http://www.college-de-france.fr/default/EN/all/equ[1]der/audiovideo.jsp (2013)

  16. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007). doi:10.1007/s11537-007-0657-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1–2), 61–74 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 2(4), 966–979 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Revus, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (2004)

    Google Scholar 

Download references

Acknowledgments

Rainer Buckdahn is supported in part by the ANR Project CAESARS (ANR-15-CE05-0024). Juan Li is supported in part by the NSF of P.R.China (No. 11222110), NSFC-RS (No. 11661130148), 111 Project (No. B12023). Jin Ma is supported in part by US NSF Grant #1106853.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckdahn, R., Li, J. & Ma, J. A Stochastic Maximum Principle for General Mean-Field Systems. Appl Math Optim 74, 507–534 (2016). https://doi.org/10.1007/s00245-016-9394-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-016-9394-9

Keywords

Mathematics Subject Classification

Navigation