Skip to main content
Log in

Modulation of N-Methyl-D-Aspartate Receptors (NMDAR), Bcl-2 and C-Fos Gene Expressions on Exposure to Individual and Mixtures of Low Concentration Metals in Zebrafish (Danio rerio)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Currently, there is limited information on the toxicity of low concentration of metal mixtures in the environment. Of particular interest is the effect of low levels of metal mixtures on neurodevelopment of aquatic organisms. This study reports the neurological gene expressions after exposing zebrafish embryos to low concentration toxic heavy metals, 120 h post fertilization (hpf). Embryos were exposed to low concentration individual and mixtures of lead (Pb), mercury (Hg), arsenic (As), and cadmium (Cd). Quantitative real-time PCR was used to assess gene expressions. The findings of this study confirmed that exposure to low concentration heavy metals upregulated N-methyl-D-aspartate (NMDA) receptor subunits NMDAR2A (NR2A), NMDAR2B (NR2B), and NMDAR2D (NR2D) and B cell lymphoma (Bcl-2) genes. NR2A genes were significantly upregulated by 90 and 74%, respectively, on exposure to Pb + As and Pb + Cd. NR2B genes were upregulated by 85.3, 68.6, 62.7, and 62.7% on exposure to As, Pb + Hg, Pb + As, and Pb + Cd, respectively. Exposure to As, Pb + Cd, and Pb + Hg + As significantly upregulated Bcl-2 genes by 2.01-, 1.84-, and 1.80-fold, respectively. NR1A and C-fos gene expressions were not significantly different from control. Upregulation of NMDAR subunits and Bcl-2 genes in this study was largely a counter measure against insults from exposure to low concentration heavy metals. Principal component analysis confirmed the influence of low concentration individual and mixtures of Pb, Hg, As, and Cd on gene expression of NMDAR subunits and Bcl-2. These data suggest that altered expression of NMDA receptor subunits and Bcl-2 genes may explain toxicity of low concentration individual and mixtures of Pb, Hg, As, and Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ainza C, Trevors J, Saier M (2010) Environmental mercury rising. Water Air Soil Pollut 205:47–48

    Article  CAS  Google Scholar 

  • Akhtar RS, Ness JM, Roth KA (2004) Bcl-2 family regulation of neuronal development and neurodegeneration. Biochim Biophys Acta 1644:189–203. doi:10.1016/j.bbamcr.2003.10.013

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA 101:12792–12797

    Article  CAS  Google Scholar 

  • An G, Lin TN, Liu JS, Xue JJ, He YY, Hsu CY (1993) Expression of c-fos and c-jun family genes after focal cerebral ischemia. Ann Neurol 33:457–464

    Article  CAS  Google Scholar 

  • Awofolu O (2005) A survey of trace metals in vegetation, soil and lower animal along some selected major roads in metropolitan city of Lagos. Environ Monitor Assess 105:431–447

    Article  CAS  Google Scholar 

  • Borges V, Santos F, Rocha J, Nogueira C (2007) Heavy metals modulate glutamatergic system in human platelets. Neurochem Res 32:953–958

    Article  CAS  Google Scholar 

  • Cambier S, Gonzalez P, Durrieu G, Bourdineaud J-P (2010) Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. Ecotoxicol Environ Saf 73:312–319. doi:10.1016/j.ecoenv.2009.10.012

    Article  CAS  Google Scholar 

  • Chan T-M et al (2009) Developmental gene regulatory networks in the zebrafish embryo. Biochim Biophys Acta (BBA)-Gene Regul Mech 1789:279–298

    Article  CAS  Google Scholar 

  • Cherbonnel-Lasserre C, Dosanjh M (1997) Suppression of apoptosis by overexpression of Bcl-2 or Bcl-x L promotes survival and mutagenesis after oxidative damage. Biochimie 79:613–617

    Article  CAS  Google Scholar 

  • Chow ESH, Hui MNY, Lin CC, Cheng SH (2008) Cadmium inhibits neurogenesis in zebrafish embryonic brain development. Aquat Toxicol 87:157–169. doi:10.1016/j.aquatox.2008.01.019

    Article  CAS  Google Scholar 

  • da Silva Acosta D et al (2016) Copper at low levels impairs memory of adult zebrafish (Danio rerio) and affects swimming performance of larvae. Comp Biochem Physiol C Toxicol Pharm 185:122–130

    Article  Google Scholar 

  • Fan G et al (2010) Methionine choline reverses lead-induced cognitive and N-methyl-D-aspartate receptor subunit 1 deficits. Toxicology 272:23–31. doi:10.1016/j.tox.2010.03.018

    Article  CAS  Google Scholar 

  • Ge H-L, Liu S-S, Su B-X, Qin L-T (2014) Predicting synergistic toxicity of heavy metals and ionic liquids on photobacterium Q67. J Hazard Mat 268:77–83

    Article  CAS  Google Scholar 

  • Gómez-Fernández JC (2014) Functions of the C-terminal domains of apoptosis-related proteins of the Bcl-2 family. Chem Phys Lipids 183:77–90. doi:10.1016/j.chemphyslip.2014.05.003

    Article  Google Scholar 

  • Guilarte TR, McGlothan JL (1998) Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure. Brain Res 790:98–107. doi:10.1016/S0006-8993(98)00054-7

    Article  CAS  Google Scholar 

  • Güner U (2016) Behavioral toxicological responses of Zebrafish Danio rerio (F. Hamilton, 1822) after exposed with different concentrations of metal mixtures. Toxicol Lett 258:S297

    Article  Google Scholar 

  • Iqbal MP (2012) Lead pollution: a risk factor for cardiovascular disease in Asian developing countries. Pak J Pharm Sci 25:289–294

    CAS  Google Scholar 

  • Luo J-H, Qiu Z-Q, Shu W-Q, Y-Y Zhang, Zhang L, J-A Chen (2009) Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicol Lett 184:121–125

    Article  CAS  Google Scholar 

  • Luo J-H, Qiu Z-Q, Zhang L, Shu W-Q (2012) Arsenite exposure altered the expression of NMDA receptor and postsynaptic signaling proteins in rat hippocampus. Toxicol Lett 211:39–44

    Article  CAS  Google Scholar 

  • Kalra N, Kumar V (2004) c-Fos is a mediator of the c-myc-induced apoptotic signaling in serum-deprived hepatoma cells via the p38 mitogen-activated protein kinase pathway. J Biol Chem 279:25313–25319

    Article  CAS  Google Scholar 

  • Karri V, Schuhmacher M, Kumar V (2016) Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: a general review of metal mixture mechanism in brain. Environ Toxicol Pharm 48:203–213

    Article  CAS  Google Scholar 

  • Kesari VP, Kumar A, Khan PK (2012) Genotoxic potential of arsenic at its reference dose. Ecotoxicol Enviro Saf 80:126–131. doi:10.1016/j.ecoenv.2012.02.018

    Article  CAS  Google Scholar 

  • Lahiri DK, Maloney B, Riyaz Basha M, Wen Ge Y, Zawia NH (2007) How and when environmental agents and dietary factors affect the course of Alzheimer’s disease: the “LEARn” model (latent early-life associated regulation) may explain the triggering of AD. Curr Alzheimer Res 4:219–228

    Article  CAS  Google Scholar 

  • Lau WK, Yeung CW, Lui PW, Cheung LH, Poon NT, Yung KKL (2002) Different trends in modulation of NMDAR1 and NMDAR2B gene expression in cultured cortical and hippocampal neurons after lead exposure. Brain Res 932:10–24. doi:10.1016/S0006-8993(01)03395-9

    Article  CAS  Google Scholar 

  • Li F, Tsien JZ (2009) Memory and the NMDA receptors. N Engl J Med 361:302–303. doi:10.1056/NEJMcibr0902052

    Article  CAS  Google Scholar 

  • Li TY, Zhang X, Wei XP, Liu YF, Qu P, Liu YX, Chen J (2011) Impact of antioxidant vitamins and heavy metal levels at birth on neurodevelopment of children assessed at two years of age. Zhonghua Chin J Pediatr 49:439–444

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Marchetti C, Gavazzo P (2005) NMDA receptors as targets of heavy metal interaction and toxicity. Neurotox Res 8:245–258

    Article  CAS  Google Scholar 

  • Marshall K-A, Daniel SE, Cairns N, Jenner P, Halliwell B (1997) Upregulation of the anti-apoptotic protein Bcl-2 may be an early event in neurodegeneration: studies on Parkinson’s and incidental Lewy body disease. Biochem Biophys Res Comm 240:84–87

    Article  CAS  Google Scholar 

  • Matović V, Buha A, Ðukić-Ćosić D, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140

    Article  Google Scholar 

  • Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698:6–18. doi:10.1016/j.ejphar.2012.10.032

    Article  CAS  Google Scholar 

  • Mejía JJ, Díaz-Barriga F, Calderón J, Ríos C, Jiménez-Capdeville ME (1997) Effects of lead–arsenic combined exposure on central monoaminergic systems. Neurotoxicol Teratol 19:489–497. doi:10.1016/S0892-0362(97)00066-4

    Article  Google Scholar 

  • Merino D, Bouillet P (2009) The Bcl-2 family in autoimmune and degenerative disorders. Apoptosis 14:570–583. doi:10.1007/s10495-008-0308-4

    Article  CAS  Google Scholar 

  • Milde-Langosch K (2005) The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41:2449–2461. doi:10.1016/j.ejca.2005.08.008

    Article  CAS  Google Scholar 

  • Mony L, Kew JN, Gunthorpe MJ, Paoletti P (2009) Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br J Pharmacol 157:1301–1317. doi:10.1111/j.1476-5381.2009.00304.x

    Article  CAS  Google Scholar 

  • Nihei MK, Guilarte TR (2001) Molecular changes in glutamatergic synapses induced by Pb2+: association with deficits of LTP and spatial learning. NeuroToxicology 22:635–643. doi:10.1016/S0161-813X(01)00035-3

    Article  CAS  Google Scholar 

  • Pan J-G, Zhang J, Zhou H, Chen L, Tang Y-H, Zheng Y (2011) Protective action of endogenously generated H2S on hypoxia-induced respiratory suppression and its relation to antioxidation and down-regulation of c-fos mRNA in medullary slices of neonatal rats. Resp Physiol Neurobiol 178:230–234. doi:10.1016/j.resp.2011.06.013

    Article  CAS  Google Scholar 

  • Panhwar AH et al (2015) Comparative evaluation of essential and toxic elements in the blood of kidney failure patients and healthy referents. Environ Monit Assess 187:1–11

    Article  CAS  Google Scholar 

  • Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47. doi:10.1016/j.coph.2006.08.011

    Article  CAS  Google Scholar 

  • Papadia S, Hardingham GE (2007) The dichotomy of NMDA receptor signaling. Neuroscientist 13:572–579

    Article  CAS  Google Scholar 

  • Powers CM, Yen J, Linney EA, Seidler FJ, Slotkin TA (2010) Silver exposure in developing zebrafish (Danio rerio): persistent effects on larval behavior and survival. Neurotoxicol Teratol 32:391–397. doi:10.1016/j.ntt.2010.01.009

    Article  CAS  Google Scholar 

  • Ramos-Chávez LA, Rendón-López CR, Silva-Adaya D, Zepeda A, Del Razo LM, Gonsebatt ME (2015) Neurological effects of inorganic arsenic exposure: altered cysteine/glutamate transport, NMDA expression and spatial memory impairment. Front Cell Neurosci. doi:10.3389/fncel.2015.00021

    Google Scholar 

  • Ruszkiewicz J, Albrecht J (2015) Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int 88:66–72

    Article  CAS  Google Scholar 

  • Santillo A, Falvo S, Chieffi P, Burrone L, Chieffi Baccari G, Longobardi S, Di Fiore MM (2014) D-aspartate affects NMDA receptor-extracellular signal–regulated kinase pathway and upregulates androgen receptor expression in the rat testis. Theriogenology 81:744–751. doi:10.1016/j.theriogenology.2013.12.009

    Article  CAS  Google Scholar 

  • Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S (2014) Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: expression of antioxidant genes. Ecotoxicol Environ Saf 107:1–8

    Article  CAS  Google Scholar 

  • Scimemi A, Tian H, Diamond JS (2009) Neuronal transporters regulate glutamate clearance, NMDA receptor activation and synaptic plasticity in the hippocampus. J Neurosci 29:14581–14595. doi:10.1523/JNEUROSCI.4845-09.2009

    Article  CAS  Google Scholar 

  • Seriani R et al (2015) In vitro mucus transportability, cytogenotoxicity, and hematological changes as non-destructive physiological biomarkers in fish chronically exposed to metals. Ecotoxicol Environ Saf 112:162–168. doi:10.1016/j.ecoenv.2014.11.003

    Article  CAS  Google Scholar 

  • Shacka JJ, Roth KA (2005) Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: therapeutic implications. Curr Drug Targets CNS Neurol Dis 4:25–39

    Article  CAS  Google Scholar 

  • Smith E, Gancarz D, Rofe A, Kempson IM, Weber J, Juhasz AL (2012) Antagonistic effects of cadmium on lead accumulation in pregnant and non-pregnant mice. J Hazard Mat 199:453–456

    Article  Google Scholar 

  • Sonnack L et al (2015) Effects of metal exposure on motor neuron development, neuromasts and the escape response of zebrafish embryos. Neurotoxicol Teratol 50:33–42

    Article  CAS  Google Scholar 

  • Steinman HM (1995) The Bcl-2 oncoprotein functions as a pro-oxidant. J Biol Chem 270:3487–3490

    CAS  Google Scholar 

  • Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV (2014) Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 37:264–278

    Article  CAS  Google Scholar 

  • Tang R, Dodd A, Lai D, McNabb WC, Love DR (2007) Validation of Zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin 39:384–390. doi:10.1111/j.1745-7270.2007.00283.x

    Article  CAS  Google Scholar 

  • Toscano CD, Hashemzadeh-Gargari H, McGlothan JL, Guilarte TR (2002) Developmental Pb2 + exposure alters NMDAR subtypes and reduces CREB phosphorylation in the rat brain. Dev Brain Res 139:217–226. doi:10.1016/S0165-3806(02)00569-2

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  Google Scholar 

  • Vidal L, Durán R, Faro LF, Campos F, Cervantes RC, Alfonso M (2007) Protection from inorganic mercury effects on the in vivo dopamine release by ionotropic glutamate receptor antagonists and nitric oxide synthase inhibitors. Toxicology 238:140–146. doi:10.1016/j.tox.2007.05.025

    Article  CAS  Google Scholar 

  • Waxman EA, Lynch DR (2005) N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11:37–49. doi:10.1177/1073858404269012

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation ISRN. Ecology 2011

  • Xu H, Shao X, Zhang Z, Zou Y, Wu X, Yang L (2013) Oxidative stress and immune related gene expression following exposure to di-n-butyl phthalate and diethyl phthalate in zebrafish embryos. Ecotoxicol Environ Saf 93:39–44. doi:10.1016/j.ecoenv.2013.03.038

    Article  CAS  Google Scholar 

  • Zahran E, Risha E (2014) Modulatory role of dietary Chlorella vulgaris powder against arsenic-induced immunotoxicity and oxidative stress in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 41:654–662. doi:10.1016/j.fsi.2014.09.035

    Article  CAS  Google Scholar 

  • Zhu B, Liu L, Li D-L, Ling F, Wang G-X (2014) Developmental toxicity in rare minnow (Gobiocypris rarus) embryos exposed to Cu, Zn and Cd. Ecotoxicol Environ Saf 104:269–277. doi:10.1016/j.ecoenv.2014.03.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Collaborative Innovation Center of Technology and Material of Water Treatment, Specialized Research Fund for the Doctoral Program of Chinese Universities from the Ministry of Education (20113227110020) and Graduate Innovative Projects in Jiangsu Province (KYLX_1067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cobbina, S.J., Mao, G., Zhao, T. et al. Modulation of N-Methyl-D-Aspartate Receptors (NMDAR), Bcl-2 and C-Fos Gene Expressions on Exposure to Individual and Mixtures of Low Concentration Metals in Zebrafish (Danio rerio). Arch Environ Contam Toxicol 72, 418–427 (2017). https://doi.org/10.1007/s00244-016-0352-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0352-y

Keywords

Navigation