Skip to main content
Log in

Assimilation of Elements and Digestion in Grass Shrimp Pre-Exposed to Dietary Mercury

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Grass shrimp Palaemonetes pugio were fed mercury (Hg)-contaminated oligochaetes for 15 days and analyzed for Hg, cadmium (Cd), and carbon assimilation efficiencies (AE) as well as toxicological end points related to digestion. Disproportionate increases in stable Hg concentrations in shrimp did not appear to be related to partitioning to trophically available Hg in worms. Hg AE by pre-exposed shrimp reached a plateau (approximately 53 %), whereas Cd AE varied (approximately 40–60 %) in a manner that was not dose-dependent. Carbon AE did not differ among treatments (approximately 69 %). Gut residence time was not impacted significantly by Hg pre-exposure (grand median approximately 465 min), however, there was a trend between curves showing percentages of individuals with markers in feces over time versus treatment. Feces-elimination rate did not vary with dietary pre-exposure. Extracellular protease activity varied approximately1.9-fold but did not exhibit dose-dependency. pH increased over the range of Hg pre-exposures within the anterior (pH approximately 5.33–6.51) and posterior (pH approximately 5.29–6.25) regions of the cardiac proventriculus and Hg assimilation exhibited a negative relationship to hydrogen ion concentrations. The results of this study indicate that previous Hg ingestion can elicit post-assimilatory impacts on grass shrimp digestive physiology, which may, in turn, influence Hg assimilation during subsequent digestive cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahearn GA (1987) Nutrient transport by the crustacean gastrointestinal tract: recent advances with vesicle techniques. Biol Rev 62:45–63

    Article  CAS  Google Scholar 

  • Ahearn GA, Zhuang Z, Duerr J, Pennington V (1994) Role of the invertebrate electrogenic 2Na+/1H+ antiporter in monovalent and divalent cation transport. J Exp Biol 196:319–335

    CAS  Google Scholar 

  • Al-Mohanna SY, Nott JA (1986) B-cells and digestion in the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda). J Mar Biol Assoc U K 66:403–414

    Article  Google Scholar 

  • Altman DG (1991) Practical statistics for medical research. Chapman and Hall/CRC Press, Boca Raton

    Google Scholar 

  • Andersen JT, Baatrup E (1988) Ultrastructural localization of mercury accumulations in the gills, hepatopancreas, midgut, and antennal glands of the brown shrimp, Crangon crangon. Aquat Toxicol 13:309–324

    Article  CAS  Google Scholar 

  • Andres S, Laporte J-M, Mason RP (2002) Mercury accumulation and flux across the gills and the intestine of the blue crab (Callinectes sapidus). Aquat Toxicol 56:303–330

    Article  CAS  Google Scholar 

  • Blazka ME, Shaikh ZA (1991) Differences in cadmium and mercury uptakes by hepatocytes: role of calcium channels. Toxicol Appl Pharmacol 110:355–363

    Article  CAS  Google Scholar 

  • Blazka ME, Shaikh ZA (1992) Cadmium and mercury accumulation in rat hepatocytes: interactions with other metal ions. Toxicol Appl Pharmacol 113:118–125

    Article  CAS  Google Scholar 

  • Campbell PGC, Clearwater SJ, Brown PB, Fisher NS, Hogstrand C, Lopez GR et al (2005) Digestive physiology, chemistry, and nutrition. In: Meyer JS, Adams WJ, Brix KV, Luoma SN, Mount DR, Stubblefield WA et al (eds) Toxicity of dietborne metals to aquatic organisms. Society of Environmental Toxicology and Chemistry, Pensacola, p 13

    Google Scholar 

  • Chavez-Crooker P, Pozo P, Castro H, Dice MS, Boutet I, Tanguy A et al (2003) Cellular localization of calcium, heavy metals, and metallothionein in lobster (Homarus americanus) hepatopancreas. Comp Biochem Physiol C 136:213–224

    CAS  Google Scholar 

  • Chen Z, Mayer LM (1998) Digestive proteases of the lugworm, Arenicola marina, inhibited by Cu from contaminated sediments. Environ Toxicol Chem 17:433–438

    CAS  Google Scholar 

  • Chen Z, Mayer LM (1999) Sedimentary metal bioavailability determined by the digestive constraints of marine deposit feeders: gut retention time and dissolved amino acids. Mar Ecol Prog Ser 176:139–151

    Article  CAS  Google Scholar 

  • Chen Z, Mayer LM, Weston DP, Bock MJ, Jumars PA (2002) Inhibition of digestive enzyme activities by copper in the guts of various marine benthic invertebrates. Environ Toxicol Chem 21:1243–1248

    Article  CAS  Google Scholar 

  • Coelho JP, Policarpo E, Pardal MA, Millward GE, Pereira ME, Duarte AC (2007) Mercury contamination in invertebrate biota in a temperate coastal lagoon Ria de Aveiro, Portugal. Mar Pollut Bull 54:464–488

    Article  Google Scholar 

  • Dang F, Wang W-X (2010) Subcellular controls of mercury transfer to a marine fish. Aquat Toxicol 99:500–506

    Article  CAS  Google Scholar 

  • Davis JLD, Metcalfe WJ, Hines AH (2003) Implications of fluctuating fish predator guilds on behavior, distribution, and abundance of a shared prey species: the grass shrimp Palaemonetes pugio. J Exp Mar Biol Ecol 293:23–40

    Article  Google Scholar 

  • Dutton J, Fisher NS (2011) Bioaccumulation of As, Cd, Cr, Hg(II), and MeHg in killifish (Fundulus heteroclitus) from amphipod and worm prey. Sci Total Environ 409:3438–3447

    Article  CAS  Google Scholar 

  • Endo T, Kimura O, Sakata M, Shaikh ZA (1997) Mercury uptake by LLC-PK1 cells: dependence on temperature and membrane potential. Toxicol Appl Pharmacol 146:294–298

    Article  CAS  Google Scholar 

  • Evans DW, Kathman RD, Walker WW (2000) Trophic accumulation and depuration of mercury by blue crabs (Callinectes sapidus) and pink shrimp (Penaeus duorarum). Mar Environ Res 49:419–434

    Article  CAS  Google Scholar 

  • Forster GR (1953) Peritrophic membranes in the caridea (Crustacea Decapoda). J Mar Biol Assoc U K 32:315–318

    Article  Google Scholar 

  • Goto D, Wallace WG (2009) Influences of prey- and predator-dependent processes on cadmium and methylmercury trophic transfer to mummichogs (Fundulus heteroclitus). Can J Fish Aquat Sci 66:836–846

    Article  CAS  Google Scholar 

  • Goto D, Wallace WG (2010) Relative importance of multiple environmental variables in structuring benthic macroinfaunal assemblages in chronically metal-polluted salt marshes. Mar Pollut Bull 60:363–375

    Article  CAS  Google Scholar 

  • Griscom SB, Fisher NS, Luoma SN (2002) Kinetic modeling of Ag, Cd and Co bioaccumulation in the clam Macoma balthica: quantifying dietary and dissolved sources. Mar Ecol Prog Ser 240:127–141

    Article  CAS  Google Scholar 

  • Hook SE, Fisher NS (2001) Sublethal effects of silver in zooplankton: Importance of exposure pathways and implications for toxicity testing. Environ Toxicol Chem 20:568–574

    Article  CAS  Google Scholar 

  • Hook SE, Fisher NS (2002) Relating the reproductive toxicity of five ingested metals in calanoid copepods with sulfur affinity. Mar Environ Res 53:161–174

    Article  CAS  Google Scholar 

  • Icely JD, Nott JA (1992) Digestion and absorption: digestive system and associated organs. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates: Decapod, crustacea, vol 10. Wiley, New York, p 147

    Google Scholar 

  • King RA, Alexander CG (1994) Fluid extraction and circulation in the proventriculus of the banana prawn Penaeus merguiensis de man. J Crustacean Biol 14:497–507

    Article  Google Scholar 

  • Klerks PL, Batholomew PR (1990) Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus hoffmeisteri. Aquat Toxicol 19:97–112

    Article  Google Scholar 

  • Kneib RT (1985) Predation and disturbance by grass shrimp, Palaemonetes pugio Holthius, in soft-substratum benthic invertebrate assemblages. J Exp Mar Biol Ecol 93:91–102

    Article  Google Scholar 

  • Kraus ML, Kraus DB (1986) Differences in the effects of mercury on predator avoidance in two populations of the grass shrimp Palaemonetes pugio. Mar Environ Res 18:277–289

    Article  CAS  Google Scholar 

  • Laporte J-M, Andres S, Mason RP (2002) Effects of ligands and other metals on the uptake of mercury and methylmercury across the gills and the intestine of the blue crab (Callinectes sapidus). Comp Biochem Physiol C 131:185–196

    Google Scholar 

  • Lovett DL, Felder DL (1990) Ontogeny of kinematics in the gut of the white shrimp Penaeus setiferus (Decapoda: Penaeidae). J Crustacean Biol 10:53–68

    Article  Google Scholar 

  • Morgan MD (1980) Grazing and predation of the grass shrimp Palaemonetes pugio. Limnol Oceanogr 25:896–902

    Article  Google Scholar 

  • Murphy MR (1981) Analyzing and presenting pH data. J Dairy Sci 65:161–163

    Article  Google Scholar 

  • Piraino MN, Taylor DL (2009) Bioaccumulation and trophic transfer of mercury in striped bass (Morone saxatilis) and tautog (Tautoga onitis) from the Narragansett Bay (Rhode Island, USA). Mar Environ Res 67:117–128

    Article  CAS  Google Scholar 

  • Quinones-Rivera ZJ, Fleeger JW (2005) The grazing effects of grass shrimp, Palaemonetes pugio, on epiphytic microalgae associated with Spartina alterniflora. Estuaries 28:274–285

    Article  Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507

    Article  CAS  Google Scholar 

  • Rainbow PS, Luoma SN, Wang W-X (2011) Trophically available metal - a variable feast. Environ Pollut 159:2347–2349

    Article  CAS  Google Scholar 

  • Rainbow PS, Ng TY-T, Shi D, Wang W-X (2004) Acute dietary pre-exposure and trace metal bioavailability to the barnacle Balanus amphitrite. J Exp Mar Biol Ecol 311:315–337

    Article  CAS  Google Scholar 

  • Rizzo A, Arcagni M, Arribere MA, Bubach D, Ribeiro Guevara S (2011) Mercury in the biotic compartments of Northwest Patagonia Lakes, Argentina. Chemosphere 84:70–79

    Article  CAS  Google Scholar 

  • Seebaugh DR (2010) Relationships between pollutant-induced digestive toxicity and the assimilation and subcellular partitioning of elements by grass shrimp Palaemonetes pugio. Doctoral dissertation, City University of New York

  • Seebaugh DR, Wallace WG (2004) Importance of metal-binding proteins in the partitioning of Cd and Zn as trophically available metal (TAM) in the brine shrimp Artemia franciscana. Mar Ecol Prog Ser 272:215–230

    Article  CAS  Google Scholar 

  • Seebaugh DR, Wallace WG (2009) Assimilation and subcellular partitioning of elements by grass shrimp collected along an impact gradient. Aquat Toxicol 93:107–115

    Article  CAS  Google Scholar 

  • Seebaugh DR, Goto D, Wallace WG (2005) Bioenhancement of cadmium transfer along a multi-level food chain. Mar Environ Res 59:473–491

    Article  CAS  Google Scholar 

  • Seebaugh DR, L’Amoreaux WJ, Wallace WG (2011) Digestive toxicity in grass shrimp collected along an impact gradient. Aquat Toxicol 105:609–617

    Article  CAS  Google Scholar 

  • Seebaugh DR, Wallace WG, L’Amoreaux WJ, Stewart GM (2012) Carbon assimilation and digestive toxicity in naïve grass shrimp (Palaemonetes pugio) exposed to dietary cadmium. Bull Environ Contam Toxicol 88:449–455

    Article  CAS  Google Scholar 

  • Selck H, Decho AW, Forbes VE (1999) Effects of chronic metal exposure and sediment organic matter on digestive absorption efficiency of cadmium by the deposit-feeding polychaete Capitella species I. Environ Toxicol Chem 18:1289–1297

    CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New York

    Google Scholar 

  • United States Environmental Protection Agency (1999) National recommended water quality criteria: Correction. EPA-922-Z-99-001, April 1999

  • Viarengo A, Marro A, Marchi B, Burlando B (2000) Single and combined effects of heavy metals and hormones on lysosomes of haemolymph cells from the mussel Mytilus galloprovincialis. Mar Biol 137:907–912

    Article  CAS  Google Scholar 

  • Vidal DE, Horne AJ (2003a) Inheritance of mercury tolerance in the aquatic oligochaete Tubifex tubifex. Environ Toxicol Chem 22:2130–2135

    Article  CAS  Google Scholar 

  • Vidal DE, Horne AJ (2003b) Mercury toxicity in the aquatic oligochaete Sparganophilus pearsei II: autotomy as a novel form of protection. Arch Environ Contam Toxicol 45:462–467

    Article  CAS  Google Scholar 

  • Vogt G, Stöcker W, Storch V, Zwilling R (1989) Biosynthesis of Astacus protease, a digestive enzyme from crayfish. Histochemistry 91:373–381

    Article  CAS  Google Scholar 

  • Wallace WG, Luoma WG (2003) Subcellular compartmentalization of Cd and Zn in two bivalves. II. Significance of trophically-available metal (TAM). Mar Ecol Prog Ser 257:125–137

    Article  CAS  Google Scholar 

  • Wallace WG, Lopez GR, Levinton JS (1998) Cadmium resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp. Mar Ecol Prog Ser 172:225–237

    Article  CAS  Google Scholar 

  • Wang W-X, Wong RSK, Wang J, Yen Y (2004) Influences of different selenium species on the uptake and assimilation of Hg(II) and methylmercury by diatoms and green mussels. Aquat Toxicol 68:39–50

    Article  CAS  Google Scholar 

  • Wicklund Glynn A, Norrgren L, Müssener A (1994) Differences in uptake of inorganic mercury and cadmium in the gills of the zebrafish, Brachydanio rerio. Aquat Toxicol 30:13–26

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by PSC-CUNY Research Awards No. 68145-00 37 and No. 62888-00 40 to W. G. W. and CUNY Collaborative Incentive Research Grant No. 80209-01 14 to G. M. S. and W. G. W. Funding for the confocal microscope was provided by National Science Foundation Grant No. DBI 0421046 to W. J. L. Shrimp were collected from Great Kills Harbor under a permit from the Division of Natural Resources, National Park Service. Tuckerton, NJ, seawater was provided by the Institute of Marine and Coastal Sciences, Rutgers University. Access to radiation facilities and near-infrared imaging equipment was provided by the Department of Biology, College of Staten Island, City University of New York. The authors thank G. R. Lopez, J. S. Weis, and two anonymous reviewers for valuable comments on previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Seebaugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seebaugh, D.R., Wallace, W.G., L’Amoreaux, W.J. et al. Assimilation of Elements and Digestion in Grass Shrimp Pre-Exposed to Dietary Mercury. Arch Environ Contam Toxicol 63, 230–240 (2012). https://doi.org/10.1007/s00244-012-9760-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-012-9760-9

Keywords

Navigation