Skip to main content
Log in

Role of Vegetation in a Constructed Wetland on Nutrient–Pesticide Mixture Toxicity to Hyalella azteca

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The toxicity of a nutrient–pesticide mixture in nonvegetated and vegetated sections of a constructed wetland (882 m2 each) was assessed using Hyalella azteca 48-h aqueous whole-effluent toxicity bioassays. Both sections were amended with a mixture of sodium nitrate, triple superphosphate, diazinon, and permethrin simulating storm-event agricultural runoff. Aqueous samples were collected at inflow, middle, and outflow points within each section 5 h, 24 h, 72 h, 7 days, 14 days, and 21 days postamendment. Nutrients and pesticides were detected throughout both wetland sections with concentrations longitudinally decreasing more in vegetated than nonvegetated section within 24 h. Survival effluent dilution point estimates—NOECs, LOECs, and LC50s—indicated greatest differences in toxicity between nonvegetated and vegetated sections at 5 h. Associations of nutrient and pesticide concentrations with NOECs indicated that earlier toxicity (5–72 h) was from permethrin and diazinon, whereas later toxicity (7–21 days) was primarily from diazinon. Nutrient–pesticide mixture concentration–response assessment using toxic unit models indicated that H. azteca toxicity was due primarily to the pesticides diazinon and permethrin. Results show that the effects of vegetation versus no vegetation on nutrient–pesticide mixture toxicity are not evident after 5 h and a 21-day retention time is necessary to improve H. azteca survival to ≥90% in constructed wetlands of this size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan IJ, House WA, Parker A, Carter JE (2005) Diffusion of the synthetic pyrethroid permethrin into bed sediments. Environ Sci Technol 39:523–530. doi:10.1021/es040054z

    Article  CAS  Google Scholar 

  • Ankley GT, Schubauer-Berigan MK, Monson PD (1995) Influence of pH and hardness on toxicity of ammonia to the amphipod Hyalella azteca. Can J Fish Aquat Sci 52:2078–2083

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association) (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, Washington, DC

    Google Scholar 

  • Bouldin JL, Farris JL, Moore MT, Smith S, Cooper CM (2007) Assessment of diazinon toxicity in sediment and water of constructed wetlands using deployed Corbicula fluminea and laboratory testing. Arch Environ Contam Toxicol 53:174–182. doi:10.1007/s00244-006-0180-6

    Article  CAS  Google Scholar 

  • US Census Bureau (2009) US & world population clocks. US Census Bureau, Population Division. http://www.census.gov/main/www/popclock.html

  • Burkepile DE, Moore MT, Holland MM (2000) Susceptibility of five nontarget organisms to aqueous diazinon exposure. Bull Enviorn Contam Toxicol 64:114–121

    Article  CAS  Google Scholar 

  • Burkhardt-Holm P, Schuerer K (2007) Application of the weight-of-evidence approach to assess the decline of brown trout (Salmo trutta) in Swiss rivers. Aquat Sci 69:51–70. doi:10.1007/s00027-006-0841-6

    Article  CAS  Google Scholar 

  • Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849. doi:10.1016/j.envint.2006.05.002

    Article  CAS  Google Scholar 

  • Camargo JA, Alonso A, Salamanca A (2005) Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58:1255–1267. doi:10.1016/j.chemosphere.2004.10.044

    Article  CAS  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2009) FAO Statistical database, FAOSTAT. http://faostat.fao.org/site/575/default.aspx#ancor

  • Huddleston GM, Gillespie WB, Rodgers JH (2000) Using constructed wetlands to treat biochemical oxygen demand and ammonia associated with a refinery effluent. Ecotox Environ Safety 45:188–193. doi:10.1006/eesa.1999.1852

    Article  CAS  Google Scholar 

  • Hunt J, Anderson B, Phillips B, Tjeerdema R, Largay B, Beretti M, Bern A (2008) Use of toxicity identification evaluations to determine the pesticide mitigation effectiveness of on-farm vegetated treatment systems. Environ Pollut 156:348–358. doi:10.1016/j.envpol.2008.02.004

    Article  CAS  Google Scholar 

  • Locke MA, Knight SS, Smith S, Cullum RF, Zablotowicz RM, Yuan Y, Bingner RL (2008) Environmental quality research in the Beasley Lake watershed, 1995–2007: succession from conventional to conservation practices. J Soil Water Conserv 63:430–442. doi:10.2489/jswc.63.6.430

    Article  CAS  Google Scholar 

  • López-Flores R, Quintana XD, Salvadó V, Hidalgo M, Sala L, Moreno-Amich R (2003) Comparison of nutrient and contaminant fluxes in two areas with different hydrological regimes (Empordà Wetlands, NE Spain). Water Res 37:3034–3046. doi:10.1016/S0043-1354(03)00109-X

    Article  Google Scholar 

  • McDowell LL, Willis GH, Murphree CE (1989) Nitrogen and phosphorus yields in run-off from silty soils in the Mississippi Delta. U.S.A. Agric Ecosyst Environ 25:119–137

    Article  Google Scholar 

  • Moore MT, Cooper CM, Smith S Jr, Cullum RF, Knight SS, Locke MA, Bennett ER (2007) Diazinon mitigation in constructed wetlands: influence of vegetation. Water Air Soil Pollut 184:313–321. doi:10.1007/s11270-007-9418-9

    Article  CAS  Google Scholar 

  • Moore MT, Denton DL, Cooper CM, Wrysinski J, Miller JL, Reece K, Crane D, Robbins P (2008) Mitigation assessment of drainage ditches for collecting irrigation runoff in California. J Environ Qual 37:486–493. doi:10.2134/jeq2007.0172

    Article  CAS  Google Scholar 

  • Moore MT, Kröger R, Cooper CM, Smith S Jr (2009a) Ability of four emergent macrophytes to remediate permethrin in mesocosm experiments. Arch Environ Contam Toxicol 57:282–288. doi:10.1007/s00244-009-9334-7

    Article  CAS  Google Scholar 

  • Moore MT, Lizotte RE, Kröger R (2009b) Efficiency of experimental rice fields (Oryza sativa L.) in mitigating diazinon runoff toxicity to Hyalella azteca. Bull Environ Contam Toxicol 82:777–780. doi:10.1007/s00128-009-9696-6

    Article  CAS  Google Scholar 

  • Murphy R, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Pape-Lindstrom PA, Lydy MJ (1997) Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ Toxicol Chem 16:2415–2420

    Article  CAS  Google Scholar 

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: Science and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Scheffer M (2004) Ecology of shallow lakes. Kluwer Academic, Dordrecht

    Google Scholar 

  • Schulz R, Peall SKC (2001) Effectiveness of a constructed wetland for retention of non-point source pesticide pollution in the Lourens River catchment, South Africa. Environ Sci Technol 35:422–426

    Article  CAS  Google Scholar 

  • Schulz R, Moore MT, Bennett ER, Milam CD, Bouldin JL, Farris JL, Smith S Jr, Cooper CM (2003) Acute toxicity of methyl-parathion in wetland mesocosms: assessing the influence of aquatic plants using laboratory testing with Hyalella azteca. Arch Environ Contam Toxicol 45:331–336. doi:10.1007/s00244-003-2170-2

    Article  CAS  Google Scholar 

  • Sharom MS, Solomon KR (1981) Adsorption–desorption, degradation, and distribution of permethrin in aqueous systems. J Agric Food Chem 29:1122–1125

    Article  CAS  Google Scholar 

  • Sherrard RM, Beard JS, Murray-Gulde CL, Rodgers JH, Shah YT (2004) Feasibility of constructed wetlands for removing chlorothalonil and chlorpyrifos from aqueous mixtures. Environ Pollut 127:385–394. doi:10.1016/j.envpol.2003.08.017

    Article  CAS  Google Scholar 

  • Smith S Jr, Cooper CM (2004) Pesticides in shallow groundwater and lake water in the Mississippi Delta MSEA. In: Nett M, Locke M, Pennington D (eds) Water quality assessments in the Mississippi Delta: regional solutions, national scope. ACS Symposium Series, vol 877. American Chemical Society, Oxford University Press, Chicago, p 91

  • Smith S, Lizotte RE (2007) Influence of selected water quality characteristics on the toxicity of λ-cyhalothrin and γ-cyhalothrin to Hyalella azteca. Bull Environ Contam Toxicol 79:548–551. doi:10.1007/s00128-007-9253-0

    Article  CAS  Google Scholar 

  • Spieles DJ, Mitsch WJ (2000) Macroinvertebrate community structure in high- and low-nutrient constructed wetlands. Wetlands 20:716–729

    Article  Google Scholar 

  • USEPA (US Environmental Protection Agency) (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-99/064. EPA, Washington, DC

    Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65. doi:10.1016/j.scitotenv.2006.09.014

    Article  CAS  Google Scholar 

  • Wheelock CE, Miller JL, Miller MJ, Phillips BM, Gee SJ, Tjeerdema RS, Hammock BD (2005) Influence of container adsorption upon observed pyrethroid toxicity to Ceriodaphnia dubia and Hyalella azteca. Aquat Toxicol 74:47–52. doi:10.1016/j.aquatox.2005.04.007

    Article  CAS  Google Scholar 

  • Yu SJ (2008) The toxicology and biochemistry of insecticides. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Lisa Brooks, James Hill, and Renee Russell for analytical assistance. Mention of equipment, computer programs, or a pesticide neither constitutes an endorsement for use by the US Department of Agriculture nor does it imply pesticide registration under FIFRA as amended. All programs and services of the USDA are offered on a nondiscriminatory basis without regard to race, color, national origin, sex, marital status, or handicap.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Lizotte Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lizotte, R.E., Moore, M.T., Locke, M.A. et al. Role of Vegetation in a Constructed Wetland on Nutrient–Pesticide Mixture Toxicity to Hyalella azteca . Arch Environ Contam Toxicol 60, 261–271 (2011). https://doi.org/10.1007/s00244-010-9596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-010-9596-0

Keywords

Navigation