Skip to main content

Advertisement

Log in

Assessment of Pyrene Bioavailability in Soil by Mild Hydroxypropyl-β-Cyclodextrin Extraction

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Bioavailability of organic pollutants in soil is currently a much-debated issue in risk assessment of contaminated sites. Ecorisk of an organic pollutant in soil is strongly influenced by the properties of the soil and its contamination history. To evaluate the effect of aging on the availability of pyrene, earthworm (Eisenia fetida) accumulation and chemical extraction by exhaustive and nonexhaustive techniques in soil spiked with a range of pyrene levels (1.07, 9.72, 88.4, 152, and 429 μg g−1 dry soil) were measured in this study using both unaged (i.e., 0 days) and aged (i.e., 69, 150, and 222 days) soil samples. The results showed that the amount of pyrene accumulated by earthworms did not change greatly with aging time under different high-dose contamination levels, but changed significantly at lower concentrations. Moreover, aging (after 222 days) significantly decreased biological and chemical availability of pyrene. Furthermore, the relationship between earthworm bioaccumulation, hydroxypropyl-β-cyclodextrin (HPCD), and organic solvent extraction was investigated in order to find a suitable and rapid method to predict pyrene bioavailability. Results showed that, at different levels of pyrene, the mean values of earthworm uptake and HPCD extractability were 10–40% and 10–65%, respectively. Correlation (r 2 = 0.985) and extraction results for pyrene suggested that mild HPCD extraction was a better method to predict bioavailability of pyrene in soil compared with organic solvent extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander M (1999) Biodegradation and bioremediation. Academic, New York

    Google Scholar 

  • Allan IJ, Semple KT, Hare R, Reid BJ (2006) Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environ Pollut 144:562–571

    Article  CAS  Google Scholar 

  • Amellal S, Boivin A, Ganier PC, Schiavon M (2006) High sorption of phenanthrene in agricultural soils. Agron Sustain Dev 26:99–106

    Article  CAS  Google Scholar 

  • Barriuso E, Benoit P, Dubus IG (2008) Formation of pesticide nonextractable (bound) residues in soil: magnitude, controlling factors and reversibility. Environ Sci Technol 42:1845–1854

    Article  CAS  Google Scholar 

  • Barthe M, Pelletier E (2007) Comparing bulk extraction methods for chemically available polycyclic aromatic hydrocarbons with bioaccumulation in worms. Environ Chem 4:271–283

    Article  CAS  Google Scholar 

  • Bergknut M, Sehlin E, Lundstedt S, Andersson PL, Haglund P, Tysklind M (2007) Comparison of techniques for estimating PAH bioavailability: uptake in Eisenia foetida, passive samplers and leaching using various solvents and additives. Environ Pollut 145:154–160

    Article  CAS  Google Scholar 

  • Blyshak LA, Rossi TM, Patonay G, Warner IM (1988) Cyclodextrin modified solvent extraction for polynuclear aromatic hydrocarbons. Anal Chem 60:2127–2131

    Article  CAS  Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 3:248–252

    Article  Google Scholar 

  • Cheema SA, Khan MI, Shen CF, Tang XJ, Lei Chen, Zhang CK, Chen YX (2010) Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater 17:384–389

    Article  Google Scholar 

  • Chung N, Alexander M (2002) Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48:109–115

    Article  CAS  Google Scholar 

  • Cuypers C, Pancras T, Grotenhuis T, Rulkens W (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-beta-cyclodextrin and triton X-100 extraction techniques. Chemosphere 46:1235–1245

    Article  CAS  Google Scholar 

  • Doick KJ, Clasper PJ, Urmann K, Semple KT (2006) Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Environ Pollut 144:345–354

    Article  CAS  Google Scholar 

  • Frederick KA, Babish JG (1982) Evaluation of mutagenicity and other adverse effects of occupational exposure to sodium azide. Regul Toxicol Pharm 2:308–322

    Article  CAS  Google Scholar 

  • Gevao B, Mordaunt C, Semple KT, Piearce TG, Jones KC (2001) Bioavailability of nonextractable (bound) pesticide residues to earthworms. Environ Sci Technol 35:501–507

    Article  CAS  Google Scholar 

  • Gomez-Eyles JL, Collins CD, Hodson ME (2010) Relative proportions of polycyclic aromatic hydrocarbons differ between accumulation bioassays and chemical methods to predict bioavailability. Environ Pollut 158:278–284

    Article  CAS  Google Scholar 

  • Hartnik T, Jensen J, Hermens JLM (2008) Nonexhaustive beta-cyclodextrin extraction as a chemical tool to estimate bioavailability of hydrophobic pesticides for earthworms. Environ Sci Technol 42:8419–8425

    Article  CAS  Google Scholar 

  • Hatzinger PB, Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29:537–545

    Article  CAS  Google Scholar 

  • Hickman ZA, Reid BJ (2005) Towards a more appropriate water based extraction for the assessment of organic contaminant availability. Environ Pollut 138:299–306

    Article  CAS  Google Scholar 

  • Hickman ZA, Swindell AL, Allan IJ, Rhodes AH, Hare R, Semple KT, Reid BJ (2008) Assessing biodegradation potential of PAHs in complex multi contaminant matrices. Environ Pollut 156:1041–1045

    Article  CAS  Google Scholar 

  • Hua GX, Killham K, Singleton I (2006) Potential application of synchronous fluorescence spectroscopy to determine benzo[a]pyrene in soil extracts. Environ Pollut 139:272–278

    Article  CAS  Google Scholar 

  • Hua G, Broderick J, Semple KT, Killham K, Singleton I (2007) Rapid quantification of polycyclic aromatic hydrocarbons in hydroxypropyl-β-cyclodextrin (HPCD) soil extracts by synchronous fluorescence spectroscopy (SFS). Environ Pollut 148:176–181

    Article  CAS  Google Scholar 

  • Jager T (1998) Mechanistic approach for estimating bioconcentration of organic chemicals in earthworms (Oligochaeta). Environ Toxicol Chem 17:2080–2090

    Article  CAS  Google Scholar 

  • Jager T, van der Wal L, Fleuren RHLJ, Barendregt A, Hermens JLM (2005) Bioaccumulation of organic chemicals in contaminated soils: evaluation of bioassays with earthworms. Environ Sci Technol 39:293–298

    Article  CAS  Google Scholar 

  • Jian Y, Wang L, Peter PF, Yu HT (2004) Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutat Res 557:99–108

    Google Scholar 

  • Kraaij R, Seinen W, Tolls J, Cornelissen G, Belfroid A (2002) Direct evidence of sequestration in sediments affecting the bioavailability of hydrophobic organic chemicals to benthic deposit-feeders. Environ Sci Technol 36:3525–3529

    Article  CAS  Google Scholar 

  • Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Safe 57:39–47

    Article  CAS  Google Scholar 

  • Liste H-H, Alexander M (2002) Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere 46:1011–1017

    Article  CAS  Google Scholar 

  • Northcott GL, Jones KC (2001) Partitioning, extractability, and formation of nonextractable PAH residues in soil. 1. Compound differences in aging and sequestration. Environ Sci Technol 35:1103–1110

    Article  CAS  Google Scholar 

  • Papadopoulos A, Paton GI, Reid BJ, Semple KT (2007) Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique. J Environ Monit 9:516–522

    Article  CAS  Google Scholar 

  • Parrish ZD, White JC, Isleyen M, Gent MPN, Berger WI, Eitzer BD, Kelsey JW, Mattina MI (2006) Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere 64:609–618

    Article  CAS  Google Scholar 

  • Puglisi E, Patterson CJ, Paton GI (2003) Non-exhaustive extraction techniques (NEETs) for bioavailability assessment of organic hydrophobic compounds in soils. Agronomie 23:755–756

    Article  CAS  Google Scholar 

  • Puglisi E, Cappa F, Fragoulis G, Trevisan M, Del Re AMA (2007) Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 67:548–556

    Article  CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000a) Bioavailability of persistent organic contaminants in soils and sediments e a perspective on mechanisms, consequences and means of assessment. Environ Pollut 108:103–112

    Article  CAS  Google Scholar 

  • Reid BJ, Stokes JD, Jones KC, Semple KT (2000b) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ Sci Technol 34:3174–3179

    Article  CAS  Google Scholar 

  • Reid BJ, Stokes JD, Jones KC, Semple KT (2004) Influence of hydroxypropyl-beta-cyclodextrin on the extraction and biodegradation of phenanthrene in soil. Environ Toxicol Chem 23:550–556

    Article  CAS  Google Scholar 

  • Sabate J, Vinas M, Solanas AM (2006) Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil. Chemosphere 63:1648–1659

    Article  CAS  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    Article  CAS  Google Scholar 

  • Stokes JD, Wilkinson A, Reid BJ, Jones KC, Semple KT (2005) Prediction of PAH biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique. Environ Toxicol Chem 24:1325–1330

    Article  CAS  Google Scholar 

  • Sun HW, Li JG (2005) Availability of pyrene in unaged and aged soils to earthworm uptake, butanol extraction and SFE. Water Air Soil Pollut 166:353–365

    Article  CAS  Google Scholar 

  • Swindell AL, Reid BJ (2006) Comparison of selected non-exhaustive extraction techniques to assess PAH availability in dissimilar soils. Chemosphere 62:1126–1134

    Article  CAS  Google Scholar 

  • Tang J, Alexander M (1999) Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil. Environ Toxicol Chem 18:2711–2714

    Article  CAS  Google Scholar 

  • Tang J, Robertson BK, Alexander M (1999) Chemical extraction methods to estimate bioavailability of DDT, DDE, and DDD in soil. Environ Sci Technol 33:4346–4351

    Article  CAS  Google Scholar 

  • Tang J, Liste HH, Alexander M (2002) Chemical assays of availability to earthworms of polycyclic aromatic hydrocarbons in soil. Chemosphere 48:35–42

    Article  CAS  Google Scholar 

  • Tang XJ, Shen CF, Cheema SA, Khan MI, Zhang CK, Chen YX (2010) Heavy metal and persistent organic compound contamination in soil from Wenling: an emerging e-waste recycling city in Taizhou area, China. J Hazard Mater 173:653–660

    Article  CAS  Google Scholar 

  • Wang Z, Chen JW, Yang P, Qiao XL, Tian FL (2007) Polycyclic aromatic hydrocarbons in Dalian soils: distribution and toxicity assessment. J Environ Monit 9:199–204

    Article  CAS  Google Scholar 

  • White JC, Hunter M, Nam K, Pignatello JJ, Alexander M (1999) Correlation between biological and physical availabilities of phenanthrene in soils and soil humin in aging experiments. Environ Toxicol Chem 18:1720–1727

    Article  CAS  Google Scholar 

  • Wong F, Bidleman TF (2010) Hydroxypropyl-b-cyclodextrin as non-exhaustive extractant for organochlorine pesticides and polychlorinated biphenyls in muck soil. Environ Pollut. doi:10.1016/j.envpol.2010.01.016

Download references

Acknowledgments

This work was supported by Science and Technology Foundation of Zhejiang Province (2008C23087) and Natural Science Foundation of Zhejiang Province (Z506039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofeng Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.I., Cheema, S.A., Shen, C. et al. Assessment of Pyrene Bioavailability in Soil by Mild Hydroxypropyl-β-Cyclodextrin Extraction. Arch Environ Contam Toxicol 60, 107–115 (2011). https://doi.org/10.1007/s00244-010-9517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-010-9517-2

Keywords

Navigation