Skip to main content
Log in

Degradation Studies of New Substitutes for Perfluorinated Surfactants

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are manmade, stable perfluorosurfactants. The properties of perfluoroalkylated compounds that cause them to persist in the environment are also the properties that made them attractive compounds for industrial usage for over 50 years. Due to the unique properties of the carbon–fluorine bond and the polarity of perfluoroalkyl groups, potential substitutes to replace perfluorinated surfactants in most cases continue to be perfluoroalkyl based. Thus, issues of persistence in the environment remain. There is a need to test emerging new substitute surfactants for biodegradability. This study involved degradability measurements of emerging perfluorinated surfactant substitutes. The stability of the substitutes of perfluorinated surfactants was tested by employing advanced oxidation processes, which were based on degradation by ultraviolet lamp, hydrogen peroxide, or both, followed by conventional tests, among them an automated method based on the manometric respirometry test (OECD 301 F; OxiTop), closed-bottle test (OECD 301 D), and standardized fixed-bed bioreactor on perfluorobutane sulfonate, fluorosurfactant Zonyl, two fluoraliphatic esters (NOVEC FC-4430 and NOVEC FC-4432), and 10-(trifluoromethoxy) decane 1 sulfonate. Most of these new surfactants are well established in the marketplace and have been used in several applications as alternatives to PFOS- and PFOA-based surfactants. Ready biodegradation tests for fluoroaliphatic esters, the fluorosurfactant Zonyl, perfluorobutane sulfonate, and 10-(trifluoromethoxy) decane-1-sulfonate using the manometric respirometry test (OxiTop) did not meet the ready biodegradability test criteria. However, 10-(trifluoromethoxy) decane-1-sulfonate was observed to be degradable when a standardized fixed-bed bioreactor test was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott BD, Wolf CJ, Schmid JE, Das KP, Zehr RD, Helfant L, Nakayama S, Lindstrom AB, Strynar MJ, Lau C (2007) Perfluorooctanoic acid induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator activated receptor-alpha. Toxicol Sci 98(2):571–581

    Article  CAS  Google Scholar 

  • Alexy R, Kümpel T, Kümmerer K (2004) Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 57:505–512

    Article  CAS  Google Scholar 

  • Austin ME, Kasturi BS, Barber M, Kannan K, Mohan-kumar PS, Mohankumar SMJ (2003) Neuro-endocrine effects of perfluorooctane sulfonate in rats. Environ Health Perspect 111:1485–1489

    CAS  Google Scholar 

  • Barker DJ (2006) Adult consequences of fetal growth restriction. Clin Obstet Gynecol 49:270–283

    Article  Google Scholar 

  • Begley TH, White K, Honigfort P, Twaroski ML, Neches R, Walker RA (2005) Perfluorochemicals: potential sources of and migration from food packaging. Food Addit Contam 22:1023–1031

    Article  CAS  Google Scholar 

  • Carpenter JH (1965) The accuracy of the Winkler method for dissolved oxygen analysis. Limnol Oceanogr 10:135–143

    Article  CAS  Google Scholar 

  • Commission of the European Communities (1994) Guidance document for the interpretation of biodegradability test data. Contract No. B-3040/93/001114. BKH Consulting Engineers, Delft

  • Dinglasan M, Ye Y, Edwards E, Mabury S (2004) Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids. Environ Sci Technol 38:2857–2864

    Article  CAS  Google Scholar 

  • EC (1993) Commission Directive 93/21/EEC of April 1993 adapting to technical progress for the 18th time Council Directive 67/548/EEC on the approximation of the laws, regulations, and administrative provisions relating to the classification, packaging, and labeling of dangerous substances. Off J Eur Commun 110:20–21

  • EC (2003) Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances and the commission regulation (EC) 1488/94 on risk assessment for existing substances and directive 98/8/EC of the European parliament and of the council concerning the placing of biocidal products on the market. European Communities

  • Ellis DA, Mabury SA, Martin J, Muir DCG (2001) Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature 412:321–324

    Article  CAS  Google Scholar 

  • Emmett EA, Shofer FS, Zhang H, Freeman D, Desai C, Shaw LM (2006) Community exposure to perfluorooctanoate: relationships between serum concentrations and exposure sources. J Occup Environ Med 48:759–770

    Article  CAS  Google Scholar 

  • Falandysz J, Taniyasu S, Gulkowska A, Yamashita N, Schulte-Oehlmann U (2006) Is fish a major source of fluorinated surfactants and repellents in humans living on the Baltic Coast? Environ Sci Technol 40:748–751

    Article  CAS  Google Scholar 

  • Fuentes S, Colomina MT, Rodriguez J, Vicens P, Domingo JL (2006) Interactions in developmental toxicology: concurrent exposure to perfluorooctane sulfonate (PFOS) and stress in pregnant mice. Toxicol Lett 164:81–89

    Article  CAS  Google Scholar 

  • Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339–1342

    Article  CAS  Google Scholar 

  • Guhl W, Steber J (2006) The value of biodegradation screening test results for predicting the elimination of chemicals’organic carbon in waste water treatment plants. Chemosphere 63:9–16

    Article  CAS  Google Scholar 

  • Hagen DF, Belisle J, Johnson JD, Venkateswarlu P (1981) Characterization of fluorinated metabolites by a gas chromatographic-helium microwave plasma detector—the biotransformation of 1H, 1H, 2H, 2H-perfluorodecanol to perfluorooetanoate. Anal Biochem 118:336–343

    Article  CAS  Google Scholar 

  • Hansen KJ, Clemen LA, Ellefson ME, Johnson HO (2001) Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environ Sci Technol 35:766–770

    Article  CAS  Google Scholar 

  • Hansen KJ, Johnson HO, Eldridge JS, Butenhoff JL, Dick LA (2002) Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River. Environ Sci Technol 36:1681–1685

    Article  CAS  Google Scholar 

  • Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S (2006) Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environ Sci Technol 40(3):1049–1054

    Article  CAS  Google Scholar 

  • Kannan K, Tao L, Sinclair E, Pastva SD, Jude DJ, Giesy JP (2005) Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Arch Environ Contam Toxicol 48:559–566

    Article  CAS  Google Scholar 

  • Kennedy GL, Butenhoff JL, Olsen GW, O’Connor JC, Seacat AM, Perkins RG, Biegel LB, Murphy SR, Farrar DG (2004) The toxicology of perfluorooctanoate. Crit Rev Toxicol 34:351–384

    Article  CAS  Google Scholar 

  • Key BD, Howell RD, Criddle CS (1998) Defluorination of organofluorine sulfur compounds by Pseudomonas sp. strain D2. Environ Sci Technol 32:2283–2287

    Article  CAS  Google Scholar 

  • Kissa E (2001) Fluorinated surfactants and repellents, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Knepper TP, Eichhorn P, Bonnington LS (2003) Aerobic biodegradation of surfactants. In: Knepper TP, Barceló D, de Voogt P (eds) Analysis and fate of surfactants in the aquatic environment. Wilson & Wilson comprehensive analytical chemistry XL. Elsevier Science, Amsterdam, pp 525–575

    Google Scholar 

  • Kubwabo C, Stewart B, Zhu J, Marro L (2005) Occurrence of perfluorosulfonates and other perfluorochemicals in dust from selected homes in the city of Ottawa, Canada. J Environ Monit 7:1074–1078

    Article  CAS  Google Scholar 

  • Kudo N, Kawashima Y (2003) Toxicity and toxico-kinetics of perfluorooctanoic acid in humans and animals. J Toxicol Sci 28(2):49–57

    Article  CAS  Google Scholar 

  • Kümmerer K, Al-Ahmad A, Steger-Hartmann T (1996) Epirubicin hydrochloride in the aquatic environment—biodegradation and bacterial toxicity. Umweltmed Forsch Prax 1:133–137

    Google Scholar 

  • Lange CC (2002) Biodegradation screen study for telomer type alcohols, 3 M Environmental Laboratory, November 6, 2002. U.S. EPA Public Docket AR-226-0555

  • Lapertot ME, Pulgarin C (2006) Biodegradability assessment of several priority hazardous substances: choice, application and relevance regarding toxicity and bacterial activity. Chemosphere 65:682–690

    Article  CAS  Google Scholar 

  • Lau C, Thibodeaux JR, Hanson RG, Narotsky MG, Rogers JM, Lindstrom AB, Strynar MJ (2006) Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol Sci 99(2):366–394

    Article  CAS  Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99(2):366–394

    Article  CAS  Google Scholar 

  • Lieder PH, York RG, Hakes DC, Chang SC, Butenhoff JL (2009) A two-generation oral gavage reproduction study with potassium perfluorobutanesulfonate (K+PFBS) in Sprague Dawley rats. Toxicology 259:33–45

    Article  CAS  Google Scholar 

  • 3M Company (2003) Health and environmental assessment of perfluorooctane sulfonic acid and its salts. U.S. EPA docket AR-226–1486. U.S. Environmental Protection Agency, Washington, DC

  • Newsted JL, Beach SA, Gallangher SP, Giesy JP (2008) Acute and chronic effects of perfluorobutane sulfonate (PFBS) on the mallard and northern bobwhite quail. Arch Environ Contam Toxicol 54:535–545

    Article  CAS  Google Scholar 

  • OECD (1993) Guideline for testing of chemicals. Ready biodegradability. Adopted by the Council on 17 July 1992, Paris

  • Olsen GW, Burris JM, Ehresman J, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR (2007) Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect 115:1298–1305

    Article  CAS  Google Scholar 

  • Olsen GW, Chang SC, Noker PE, Gorman GS, Ehresman DJ, Lieder PH, Butenhoff JL (2009) A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans. Toxicology 256(1–2):65–74

    Article  CAS  Google Scholar 

  • Orata F, Quinete N, Werres F, Wilken RD (2009) Determination of perfluorooctanoic acid and perfluorooctane sulfonate in Lake Victoria Gulf water. Bull Environ Contam Toxicol 82:218–222

    Article  CAS  Google Scholar 

  • Parsons JR, Sáez M, Dolfing J, de Voogt P (2008) Biodegradation of perfluorinated compounds. Rev Environ Contam Toxicol 196:53–71

    CAS  Google Scholar 

  • Peschka M, Fichtner N, Hierse W, Kirsch P, Montenegro E, Seidel M, Wilken RD, Knepper TP (2008a) Synthesis and analytical follow-up of the mineralization of a new fluorosurfactant prototype. Chemosphere 72:1534–1540

    Article  CAS  Google Scholar 

  • Peschka M, Frömel T, Fichtner N, Hierse W, Kleineidam M, Montenegro E, Knepper TP (2008b) Mechanistic studies in biodegradation of the new synthesized fluorosurfactant 9-[4(trifluoromethyl)phenoxy]nonane-1 sulfonate. J Chromatogr A 1187:79–86

    Article  CAS  Google Scholar 

  • Poulsen PB, Jensen AA, Wallström E (2005) More environmentally friendly alternatives to PFOS-compounds and PFOA. Environmental Project No. 1013. Miljøprojekt [Danish Ministry of the Environment]

  • Powley C, Michalczyk M, Kaiser M, Buxton W (2005) Determination of perfluorooctanoic acid (PFOA) extractable from the surface of commercial cookware under simulated cooking conditions by LC/MS/MS. Analyst 130:1299–1302

    Article  CAS  Google Scholar 

  • Prevedouros K, Cousins IT, Buck RC, Korzenoniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40:32–44

    Article  CAS  Google Scholar 

  • Remde A, Debus R (1996) Biodegradability of fluorinated surfactants under aerobic and anaerobic conditions. Chemosphere 32(8):1563–1574

    Article  CAS  Google Scholar 

  • Reuschenbach P, Pagga U, Strotmann U (2003) A critical comparison of respirometric biodegradation tests based on OECD 301 and related test methods. Water Res 37:1571–1582

    Article  CAS  Google Scholar 

  • Roppola K, Kuokkanen T, Nurmesniemi H, Rämö J, Pöykiö R, Prokkola H (2006) Comparison study of manometric respirometric test and common chemical methods in the determination of BOD7 in a pulp and paper mill’s wastewaters. J Autom Methods Manage Chem 2007:1–5 (article ID 90384)

  • Sáez M, de Voogt P, Parsons JR (2008) Persistence of perfluoroalkylated substances in closed bottle tests with municipal sewage sludge. Environ Sci Pollut Res 15:472–477

    Article  CAS  Google Scholar 

  • Schröder HFr, Meesters RJW (2005) Stability of fluorinated surfactants in advanced oxidation processes—a follow up of degradation products using flow injection––mass spectrometry, liquid chromatography––mass spectrometry and liquid chromatography––multiple stage mass spectrometry. J Chromatogr A 1082:110–119

    Article  CAS  Google Scholar 

  • Sinclair E, Kim SK, Akinleye HB, Kannan K (2007) Quantitation of gas-phase perfluoroalkyl surfactants and fluorotelomer alcohols released from nonstick cookware and microwave popcorn bags. Environ Sci Technol 41(4):1180–1185

    Article  CAS  Google Scholar 

  • Stasinakis AS, Petalas AV, Mamais D, Thomaidis NS (2008) Application of the OECD 301F respirometric test for the biodegradability assessment of various potential endocrine disrupting chemicals. Bioresource Technol 99:3458–3467

    Article  CAS  Google Scholar 

  • Taniyasu S, Kannan K, Horii Y, Hanari N, Yamashita N (2003) A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environ Sci Technol 37:2634–2639

    Article  CAS  Google Scholar 

  • Taniyasu S, Kannan K, So MK, Gulkowska A, Sinclair E, Okazawa T, Yamashita N (2005) Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. J Chromatogr A 1093:89–97

    Article  CAS  Google Scholar 

  • Tao L, Kannan K, Kajiwara N, Costa MM, Fillmann G, Takahashi S, Tanabe S (2006) Perfluorooctanesulfonate and related fluorochemicals in albatrosses, elephant seal, penguins and polar skuas from the southern oceans. Environ Sci Technol 40:7642–7648

    Article  CAS  Google Scholar 

  • Tittlemier S, Pepper K, Seymour C, Moisey J, Bronson R, Cao X, Dabeka W (2007) Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. J Agr Food Chem 55:3203–3210

    Article  CAS  Google Scholar 

  • Vähäoja P, Piltonen P, Hyvönen A, Niinimäki J, Jalonen J, Kuokkanen T (2005) Biodegradability studies of certain wood preservatives in groundwater as determined by the respirometric BOD OxiTop method. Water Air Soil Pollut 165:313–324

    Article  CAS  Google Scholar 

  • Wang N, Szostek B, Buck RC, Folsom PW, Sulecki LM, Capka V, Berti WR, Gannon JT (2005a) Fluorotelomer alcohol biodegradation—direct evidence that perfluorinated carbon chains breakdown. Environ Sci Technol 39:7516–7528

    Article  CAS  Google Scholar 

  • Wang N, Szostek B, Folsom PW, Sulecki LM, Capka V, Buck RC, Berti WR, Gannon JT (2005b) Aerobic biotransformation of C-14-labeled 8–2 telomer B alcohol by activated sludge from a domestic sewage treatment plant. Environ Sci Technol 39:531–538

    Article  CAS  Google Scholar 

  • Winkler LW (1888) The determination of dissolved oxygen in water. Ber Deut Chem Ges 21:2843–2854

    Article  Google Scholar 

  • Xu L, Krenitsky DM, Seacat AM, Butenhoff JL, Anders MW (2004) Biotransformation of N-ethyl-N-(2-hydroxyethyl)perfluorooctanesulfonamide by rat liver microsomes, cytosol, and slices and by expressed rat and human cytochromes P450. Chem Res Toxicol 17:767–775

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work described in this article was financially supported by CAPES, CNPq, FAPERJ, and Rhine-Main Water Research. We also gratefully acknowledge Professor Thorsten Hoffmann for allowing access to equipment (HPLC/MS) at the Institute of Inorganic and Analytic Chemistry, Johannes Gutenberg-Universität, Mainz, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Quinete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinete, N., Orata, F., Maes, A. et al. Degradation Studies of New Substitutes for Perfluorinated Surfactants. Arch Environ Contam Toxicol 59, 20–30 (2010). https://doi.org/10.1007/s00244-009-9451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9451-3

Keywords

Navigation