Skip to main content

Advertisement

Log in

Responses of Antioxidant Systems After Exposition to Rare Earths and Their Role in Chilling Stress in Common Duckweed (Lemna minor L.): A Defensive Weapon or a Boomerang?

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Extensive agriculture application of rare earth elements (REEs) in Far East countries might cause spreading of these metals in aquatic and terrestrial ecosystems, thus inducing a growing concern about their environmental impact. In this work the effects of a mix of different REE nitrate (RE) and of lanthanum nitrate (LA) on catalase and antioxidant systems involved in the ascorbate–glutathione cycle were investigated in common duckweed Lemna minor L. The results indicated that L. minor shows an overall good tolerance to the presence of REEs in the media. Treatments at concentrations up to 5 mM RE and 5 mM LA did not cause either visible symptoms on plants or significant effects on reactive oxygen species (ROS) production, chlorophyll content, and lipid peroxidation. Toxic effects were observed after 5 days of exposition to 10 mM RE and 10 mM LA. A remarkable increase in glutathione content as well as in enzymatic antioxidants was observed before the appearance of the stress symptoms in treated plants. Duckweed plants pretreated with RE and LA were also exposed to chilling stress to verify whether antioxidants variations induced by RE and LA improve plant resistance to the chilling stress. In pretreated plants, a decrease in ascorbate and glutathione redox state and in chlorophyll content and an increase in lipid peroxidation and ROS production levels were observed. The use of antioxidant levels as a stress marker for monitoring REE toxicity in aquatic ecosystems by means of common duckweed is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alibo DS, Nozaki Y (2004) Dissolved rare earth elements in the eastern Indian Ocean: chemical tracers of the water masses. Deep-Sea Research Part I-Oceanograp Research Papers, vol 51. pp 559–576

  • Anonymous (2003) Chinese consumption continues to increase in 3 years. China Rare Earth Information Center News, vol 9. pp 2–3

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Aruguete DM, Aldstadt JH, Mueller GM (1998) Accumulation of several heavy metals and lanthanides in mushrooms (Agaricales) from the Chicago region. Sci Total Environ 224:43–56. doi:10.1016/S0048-9697(98)00319-2

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplast: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601

    Article  CAS  Google Scholar 

  • Bellicampi D, Dipierro N, Salvi G, Cervone F, De Lorenzo G (2000) Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxine-regulated rolB gene expression in tobacco leaf explants. Plant Physiol 122:1379–1385. doi:10.1104/pp.122.4.1379

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Cao X, Wang X, Zhao G (2000) Assessment of the bioavailability of rare earths in soils by chemical fractionation and multiple regression analysis. Chemosphere 40:23–28. doi:10.1016/S0045-6535(99)00321-5

    Article  CAS  Google Scholar 

  • Cascone A, Forni C, Migliore L (2004) Flumequine uptake and the aquatic duckweed, Lemna minor L. Water Air Soil Pollut 156:241–249. doi:10.1023/B:WATE.0000036816.15999.53

    Article  CAS  Google Scholar 

  • Chen WP, Li PH (2001) Chilling induced Ca2+ overload enhances production of active oxygen species in maize (Zea mays L.) cultured cells: the effect of abscisic acid treatment. Plant Cell Environ 24:791–800 doi:10.1046/j.1365-3040.2001.00729.x

    Article  CAS  Google Scholar 

  • Chua U (1998) Bio-accumulation of environmental residues of rare earth elements in aquatic flora Eichhornia crassipes (Mart.) Solms in Guangdong Province of China. Sci Total Environ 214:79–85. doi:10.1016/S0048-9697(98)00055-2

    Article  CAS  Google Scholar 

  • d’Aquino L, Carboni MA, Woo SL, Morgana M, Nardi L, Lorito M (2004) Effect of rare earth application on the growth of Trichoderma spp and several plant pathogenic fungi. J Zhejiang Univ Sci 30:424

    Google Scholar 

  • d’Aquino L, de Pinto MC, Nardi L, Morgana M, Tommasi F (2009) Effect of some light rare earth elements on seed germination, seedling growth and antioxidant metabolism in Triticum durum. Chemosphere 75:900–905. doi:10.1016/j.chemosphere.2009.01.026

    Article  Google Scholar 

  • De Gara L, de Pinto MC, Moliterni VMC, D’Egidio MG (2003) Redox regulation and storage processes during maturation in kernels of Triticum durum. J Exp Bot 54:249–258. doi:10.1093/jxb/54.381.249

    Article  Google Scholar 

  • Diatloff E, Smith FW, Asher CJ (1995) Rare earth elements and plant growth. I: Effects of lanthanum and cerium on root elongation of corn and mungbean. J Plant Nutr 18:1963–1976. doi:10.1080/01904169509365037

    Article  CAS  Google Scholar 

  • Fashui H (2002) Study on the mechanism of cerium nitrate effects on germination of aged rice seed. Biol Trace Elem Res 87:191–200. doi:10.1385/BTER:87:1-3:191

    Article  Google Scholar 

  • Haley TJ (1979) Toxicity. In: Schneider KA Jr, Eyring KA (eds) Handbook on the physics and chemistry of rare earths. North-Holland, Amsterdam, pp 553–585

  • Harborne J (1973) Phytochemical methods. Chapman & Hall, London

    Google Scholar 

  • He ML, Ranz D, Rambeck WA (2001) Study on the performance enhancing effects of rare earth elements in growing and fattening pigs. J Anim Physiol Anim Nutr 85:263–270. doi:10.1046/j.1439-0396.2001.00327.x

    Article  CAS  Google Scholar 

  • Hu X, Ding Z, Chen Y, Wang X, Dai L (2002) Bioaccumulation of lanthanum and cerium and their effects on the growth of wheat (Triticum aestivum L.) seedlings. Chemosphere 48:621–629. doi:10.1016/S0045-6535(02)00109-1

    Article  CAS  Google Scholar 

  • Hu Z, Richter H, Sparovek G, Schnug E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27:183–220. doi:10.1081/PLN-120027555

    Article  CAS  Google Scholar 

  • Ince NH, Dirilgen N, Apikyan IG, Tezcanli G, Üstün B (1999) Assessment of toxic interactions of heavy metals in binary mixtures: a statistical approach. Arch Environ Contam Toxicol 36:365–372. doi:10.1007/PL00006607

    Article  CAS  Google Scholar 

  • Ippolito MP, Paciolla C, d’Aquino L, Morgana M, Tommasi F (2007) Effect of rare earth elements on growth and antioxidant metabolism in Lemna minor L. Caryologia 60:125–128

    Google Scholar 

  • Jia Y, Yongshen G, Fuli Z (2005) Resistence of LaCl3 to oxidative stress induced by 2, 4-dichlorophenoxy. J Rare Earths 23:240–244

    Google Scholar 

  • Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol Plant 113:158–164. doi:10.1034/j.1399-3054.2001.1130202.x

    Article  CAS  Google Scholar 

  • Landolt E (1986) The family of Lemnaceae: a monographic study. In: Biosystematic investigations in the family of duckweeds (Lemnaceae). Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, Zürich, pp 127–128

  • Liang T, Zhang S, Wang L, Kung H-T, Wang Y, Hu A, Ding S (2005) Environ biogeochemical behaviour of rare earth elements in soil–plant systems. Environ Geochem Health 27:302–311. doi:10.1007/s10653-004-5734-9

    Article  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 9:405–410. doi:10.1016/S1360-1385(02)02312-9

    Article  Google Scholar 

  • Mohan BS, Hosetti BB (1997) Potential phytotoxicity of lead and cadmium to Lemna minor grown in sewage stabilization ponds. Environ Pollut 98:233–238. doi:10.1016/S0269-7491(97)00125-5

    Article  CAS  Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25%. Plant Cell 7:321–331

    Article  CAS  Google Scholar 

  • Nardi L, Carboni MA, Morgana M, Barbesti S, Errico S, Zoina A, d’Aquino L (2005) Effect of rare earth elements on the growth of Agrobacterium spp. and Rhizobium leguminosarum Frank. Cytometry 69:443–444

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249

    Article  CAS  Google Scholar 

  • Okuda T, Matsuda Y, Yamanaka A, Sagisaka S (1991) Abrupt increase in the level of hydrogen-peroxide in leaves of winter-wheat is caused by cold treatment. Plant Physiol 97:1265–1267. doi:10.1104/pp.97.3.1265

    Article  CAS  Google Scholar 

  • Paciolla C, Ippolito MP, Logrieco A, Mulè G, Dipierro N, Dipierro S (2008) A different trend of antioxidant defence responses makes tomato plants less susceptible to beauvericin than to T-2 mycotoxin phytotoxicity. Physiol Mol Plant Path 72:3–9. doi:10.1016/j.pmpp.2008.06.003

    Article  CAS  Google Scholar 

  • Paradiso A, Berardino R, de Pinto MC, Sanità di Toppi L, Storelli MM, Tommasi F, De Gara L (2008) Increase in ascorbate–glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49:362–374. doi:10.1093/pcp/pcn013

    Article  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  CAS  Google Scholar 

  • Protano G, Riccobono F (2002) High contents of rare earth elements (REE) in stream waters of a Cu-Pb-Zn mining area. Environ Pollut 117:499–514. doi:10.1016/S0269-7491(01)00173-7

    Article  CAS  Google Scholar 

  • Razinger J, Dermastia M, Drinovec L, Drobne D, Zrimec A, Koce JD (2007) Antioxidative responses of duckweed (Lemna minor L.) to short-term copper exposure. Environ Sci Pollut Res 14:194–201. doi:10.1065/espr2006.11.364

    Article  CAS  Google Scholar 

  • Song XS, Hu WH, Mao WH, Joshua OO, Zhou YH, Yu JQ (2005) Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Plant Physiol Biochem 43:1082–1088. doi:10.1016/j.plaphy.2005.11.003

    Article  CAS  Google Scholar 

  • Tommasi F, Paciolla C, de Pinto MC, De Gara L (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seed. J Exp Bot 52:1647–1654. doi:10.1093/jexbot/52.361.1647

    Article  CAS  Google Scholar 

  • Tyler G (2004) Rare earth elements in soil and plant systems: a review. Plant Soil 267:191–206. doi:10.1007/s11104-005-4888-2

    Article  CAS  Google Scholar 

  • von Tucher S, Schmidhalter U (2005) Lanthanum uptake from soil and nutrient solution and its effect on plant growth. J Plant Nutr Soil Sci 168:574–580. doi:10.1002/jpln.200520506

    Article  Google Scholar 

  • Wang K, Li R, Cheng Y, Zhu B (1999) Lanthanides—the future drugs? Coord Chem Rev 190:297–308. doi:10.1016/S0010-8545(99)00072-7

    Article  Google Scholar 

  • Weltje L, Brouwer AH, Verburg TG, Wolterbeek HT, de Goeij JJM (2002a) Accumulation and elimination of lanthanum by duckweed (Lemna minor L) as influenced by organism growth and lanthanum sorption to glass. Environ Toxicol Chem 21:1483–1489. doi:10.1897/1551-5028(2002)021<1483:AAEOLB>2.0.CO;2

    Article  CAS  Google Scholar 

  • Weltje L, Heidenreich H, Zhu W, Wolterbeek HT, Korhammer S, de Goeij JJM, Markert B (2002b) Lanthanide concentrations in freshwater plants and molluscs, related to those in surface water, pore water and sediment: a case study in the Netherlands. Sci Total Environ 286:191–214. doi:10.1016/S0048-9697(01)00978-0

    Article  CAS  Google Scholar 

  • Wyttenbach A, Tobler R, Furrer V (1996) The concentrations of rare earth elements in plants and in the adjacent soils. J Radioanal Nucl Chem 204:401–413. doi:10.1007/BF02060328

    Article  CAS  Google Scholar 

  • Xiong BK, Zhang SR, Guo BS, Zheng W (2001) Reviews of the use of REE-based fertilizer in the past of three decades. Symposium on the Use of REE in Agriculture of China. Baotou, People’s Republic of China

  • Xu X, Zhu W, Wang Z, Witkamp GJ (2002) Distribution of rare earths and heavy metals in field-grown maize after application of rare earth-containing fertilizers. Sci Total Environ 293:97–105. doi:10.1016/S0048-9697(01)01150-0

    Article  CAS  Google Scholar 

  • Zeng FL, An Y, Zhang HT, Zhang MF (1999) The effects of La3+ on the peroxidation of membrane lipids in wheat seedling leaves under osmotic stress. Biol Trace Elem Res 69:141–150. doi:10.1007/BF02783865

    Article  CAS  Google Scholar 

  • Zhang J, Kirkham B (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132:361–373. doi:10.1111/j.1469-8137.1996.tb01856.x

    Article  CAS  Google Scholar 

  • Zhang S, Shan X (2001) Speciation of rare earth elements in soil and accumulation by wheat with rare earth fertilizer application. Environ Pollut 112:395–405. doi:10.1016/S0269-7491(00)00143-3

    Article  CAS  Google Scholar 

  • Zhang L, Zeng F, Xiao R (2003) Effect of lanthanum ions (La3+) on the reactive oxygen species scavenging enzymes in wheat leaves. Biol Trace Elem Res 91:243–255. doi:10.1385/BTER:91:3:243

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Tommasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ippolito, M.P., Fasciano, C., d’Aquino, L. et al. Responses of Antioxidant Systems After Exposition to Rare Earths and Their Role in Chilling Stress in Common Duckweed (Lemna minor L.): A Defensive Weapon or a Boomerang?. Arch Environ Contam Toxicol 58, 42–52 (2010). https://doi.org/10.1007/s00244-009-9340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9340-9

Keywords

Navigation