Skip to main content
Log in

Using Matrix Solid-Phase Microextraction (Matrix-SPME) to Estimate Bioavailability of DDTs in Soil to Both Earthworm and Vegetables

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study was conducted to find an appropriate approach for the assessment of bioavailability of DDTs in soil to both earthworm and vegetables. Four chemical approaches—Soxhlet extraction with n-hexane, n-butanol agitation extraction, water agitation extraction, and matrix solid-phase microextraction (matrix-SPME)—were used to assess the relationships between the extractability of 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (p,p′-DDE), 1,1,1-trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl) ethane (o,p′-DDT), 1,1-dichloro-2,2-bis(p-chlorophenyl) ethane (p,p′-DDD), and 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (p,p′-DDT) in soil and their amounts uptaken by the earthworm (Eisenia foetida), Chinese cabbage (Brassica campestris L. spp.), and cole (Brassica napus L.). These results indicated that the extractability and bioavailability of DDTs in soil decreased with time of aging. Correlation analysis showed that n-butanol extraction or 12-h matrix-SPME could be used to assess the bioavailability of DDTs to the earthworm, and Soxhlet extraction, n-butanol extraction, or 12-h matrix-SPME could be used to predict the bioavailability of DDTs to both Chinese cabbage and cole. As a solventless, time-efficient, and negligible-depletion technique, it could be concluded that matrix-SPME is a better approach to predict the bioavailability of DDTs to both the earthworm and vegetables, compared with Soxhlet extraction, n-butanol extraction, and water extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Calamarl D, Baccl E, Focardi S, Gaggi C, Morosini M, Vighi M (1991) Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons. Environ Sci Technol 25:1489–1495. doi:10.1021/es00020a020

    Article  Google Scholar 

  • Conder JM, la Point TW, Lotufo GR, Steevens JA (2003) Nondestructive, minimal-disturbance, direct-burial solid-phase microextraction fiber technique for measuring TNT in sediment. Environ Sci Technol 37:1625–1632. doi:10.1021/es0260770

    Article  CAS  Google Scholar 

  • Esteve-Turrillas FA, Scott WC, Pastor A, Dean JR (2005) Uptake and bioavailability of persistent organic pollutants by plants grown in contaminated soil. J Environ Monit 7:1093–1098. doi:10.1039/b507414b

    Article  CAS  Google Scholar 

  • Gaw SK, Kim ND, Northcott GL, Wilkins AL, Robinson G (2008) Uptake of ∑DDT, arsenic, cadmium, copper, and lead by lettuce and radish grown in contaminated horticultural soils. J Agric Food Chem 56:6584–6593. doi:10.1021/jf073327t

    Article  CAS  Google Scholar 

  • Hatzinger PB, Alexander M (1995) Effect of ageing of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29:537–545. doi:10.1021/es00002a033

    Article  CAS  Google Scholar 

  • Hoke RA, Ankley GT, Cotter AM, Goldenstein T, Kosian PA, Phipps GL, VanderMeiden FM (1994) Evaluation of equilibrium partitioning theory for predicting acute toxicity of field-collected sediments contaminated with DDT, DDE and DDD to the Amphipod hyalella aztec a. Environ Toxicol Chem 13:157–166. doi:10.1897/1552-8618(1994)13[157:EOEPTF]2.0.CO;2

    Article  CAS  Google Scholar 

  • Kelsey JW, Kottler BD, Alexander M (1997) Selective chemical extractions to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31:214–217. doi:10.1021/es960354j

    Article  CAS  Google Scholar 

  • Krauss M, Wilcke W, Zech W (2000) Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in soils. Environ Sci Technol 34:4335–4340. doi:10.1021/es001137s

    Article  CAS  Google Scholar 

  • Liste H-H, Alexander M (2002) Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere 46:1011–1017. doi:10.1016/S0045-6535(01)00165-5

    Article  CAS  Google Scholar 

  • Lunney A, Zeeb B, Reimer K (2004) Uptake of weathered DDT in vascular plants: potential for phytoremediation. Environ Sci Technol 38:6147–6154. doi:10.1021/es030705b

    Article  CAS  Google Scholar 

  • Mayer P, Vaes WHJ, Wijnker F, Legierse KCHM, Kraaij RH, Tolls J, Hermens JLM (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183. doi:10.1021/es001179g

    Article  CAS  Google Scholar 

  • Menchai P, Zwieten LV, Kimber S, Ahmad N, Rao PSC, Hose G (2008) Bioavailable DDT residues in sediments: laboratory assessment of ageing effects using semi-permeable membrane devices. Environ Pollut 153:110–118. doi:10.1016/j.envpol.2007.07.017

    Article  CAS  Google Scholar 

  • Mezin LC, Hale RC (2004) Combined effects of humic acids and salinity on solid-phase microextraction of DDT and chlorpyrifos, an estimator of their bioavailability. Environ Toxicol Chem 23:576–582. doi:10.1897/02-430

    Article  CAS  Google Scholar 

  • Morrison DE, Robertson BK, Alexander M (2000) Bioavailability to earthworms of aged DDT, DDE, DDD and dieldrin in soil. Environ Sci Technol 34:709–713. doi:10.1021/es9909879

    Article  CAS  Google Scholar 

  • Parkerton TF, Stone MA, Letinski DJ (2000) Assessing the aquatic toxicity of complex hydrocarbon mixtures using solid phase microextraction. Toxicol Lett 112–113:273–282. doi:10.1016/S0378-4274(99)00237-4

    Article  Google Scholar 

  • Peters R, Kelsey JW, White JC (2007) Differences in p,p′-DDE bioaccumulation from compost and soil by the plants Cucurbita pepo and Cucurbita maxima and the earthworms Eisenia foetida and Lumbricus terrestris. Environ Pollut 148:539–545. doi:10.1016/j.envpol.2006.11.030

    Article  CAS  Google Scholar 

  • Reid BJ, Stokes JD, Jones KC, Semple KT (2000) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ Sci Technol 34:3174–3179. doi:10.1021/es990946c

    Article  CAS  Google Scholar 

  • Sabljić A, Güsten H, Verhaar H, Hermens J (1995) QSAR modelling of soil sorption. Improvements and systematics of log KOC vs. log KOW correlations. Chemosphere 31:4489–4514. doi:10.1016/0045-6535(95)00327-5

    Article  Google Scholar 

  • Sijm D, Kraaij R, Belfroid A (2000) Bioavailability in soil or sediment: exposure of different organisms and approaches to study it. Environ Pollut 108:113–119. doi:10.1016/S0269-7491(99)00207-9

    Article  CAS  Google Scholar 

  • Styrishave B, Mortensen M, Krogh PH, Andersen O, Jensen J (2008) Solid-phase microextraction (SPME) as a tool to predict the bioavailability and toxicity of pyrene to the Springtail, Folsomia candida, under various soil conditions. Environ Sci Technol 42:1332–1336. doi:10.1021/es072102w

    Article  CAS  Google Scholar 

  • Tang J, Robertson BK, Alexander M (1999) Chemical-extraction methods to estimate bioavailability of DDT, DDE, and DDD in soil. Environ Sci Technol 33:4346–4351. doi:10.1021/es990581w

    Article  CAS  Google Scholar 

  • Tao S, Guo LQ, Wang XJ, Liu WX, Ju TZ, Dawson R, Cao J, Xu FL, Li BG (2004) Use of sequential ASE extraction to evaluate the bioavailability of DDT and its metabolites to wheat roots in soils with various organic carbon contents. Sci Total Environ 320:1–9. doi:10.1016/S0048-9697(03)00452-2

    Article  CAS  Google Scholar 

  • Tao S, Xu FL, Wang XJ, Liu WX, Gong ZM, Fang JY, Zhu LZ, Luo YM (2005) Organochlorine pesticides in agricultural soil and vegetables from Tianjin, China. Environ Sci Technol 39:2494–2499. doi:10.1021/es048885s

    Article  CAS  Google Scholar 

  • Trimble TA, You J, Lydy MJ (2008) Bioavailability of PCBs from field-collected sediments: application of Tenax extraction and matrix-SPME techniques. Chemosphere 71:337–344. doi:10.1016/j.chemosphere.2007.09.001

    Article  CAS  Google Scholar 

  • Tsukino H, Hanaoka T, Sasaki H, Motoyama H, Hiroshima M, Tanaka T, Kabuto M, Niskar AS, Rubin C (2005) Associations between serum levels of selected organochlorine compounds and endometriosis in infertile Japanese women. Environ Res 99:118–125. doi:10.1016/j.envres.2005.04.003

    Article  CAS  Google Scholar 

  • Turusov V, Rakitsky V, Tomatis L (2002) Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence and risks. Environ Health Perspect 110:125–128

    CAS  Google Scholar 

  • White JC (2002) Differential bioavailability of field-weathered p,p′-DDE to plants of the Cucurbita and Cucumis genera. Chemosphere 49:143–152. doi:10.1016/S0045-6535(02)00277-1

    Article  CAS  Google Scholar 

  • You J, Landrum PF, Lydy MJ (2006) Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ Sci Technol 40:6348–6353. doi:10.1021/es060830y

    Article  CAS  Google Scholar 

  • You J, Pehkonen S, Landrum PF, Lydy MJ (2007) Desorption of hydrophobic compounds from laboratory-spiked sediments measured by tenax absorbent and matrix solid-phase microextraction. Environ Sci Technol 41:5672–5678. doi:10.1021/es0700395

    Article  CAS  Google Scholar 

  • Yu YL, Wu XM, Li SN, Fang H, Tan YJ, Yu JQ (2005) Bioavailability of butachlor and myclobutanil residues in soil to earthworms. Chemosphere 59:961–967. doi:10.1016/j.chemosphere.2004.11.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology R&D Program of China (Nos. 2006AA06Z386 and 2007AA06Z306), National Nature Science Foundation of China (No. 30771254), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20070335113), the Major State Basic Research Development Programme of China (2009CB119000), and China Postdoctoral Science Foundation (No. 20070421174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlong Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, H., Chu, X., Wang, X. et al. Using Matrix Solid-Phase Microextraction (Matrix-SPME) to Estimate Bioavailability of DDTs in Soil to Both Earthworm and Vegetables. Arch Environ Contam Toxicol 58, 62–70 (2010). https://doi.org/10.1007/s00244-009-9329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9329-4

Keywords

Navigation