Skip to main content
Log in

Effect of Cadmium(II), Chromium(VI), and Arsenic(V) on Long-Term Viability- and Growth-Inhibition Assays Using Vibrio fischeri Marine Bacteria

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

As a complement to previous results obtained using the standard Microtox acute-toxicity test, which is based on measuring the rapid decrease of bioluminescence (5 to 30 minutes of exposure) in Vibrio fischeri bacteria in the presence of toxicants, the long-term effects of Cd(II), Cr(VI), and As(V) were studied on growth rate and viability assays of the same bacteria adapted to longer-lasting cultures, i.e., 48 or 72 hours instead of 5 or 30 minutes. Effects on viability or growth, as studied by establishing dose- and time-response curves, confirmed that these poisonous chemicals were not particularly toxic to these bacteria. Nevertheless, in the case of Cr(VI), the viability-inhibition assay appeared to be more sensitive than the Microtox acute-toxicity test. Interestingly, it was possible to observe a clear hormesis phenomenon, especially for Cd(II), under the conditions of both viability- and growth-inhibition assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Backhaus T, Froehner K, Altenburger R, Grimme LH (1997) Toxicity testing with Vibrio fischeri: A comparison between the long term (24h) and the short term (30 min) bioassay. Chemosphere 35:2925–2938

    Article  Google Scholar 

  • Bopp LH, Erhlich HL (1988) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol 150:426–431

    Article  Google Scholar 

  • Bulich A (1986) Bioluminescence assays. In: Bitton G, Dutka B (eds) Toxicity testing using microorganisms. Volume 1. CRC, Boca Raton, FL, pp 27–55

    Google Scholar 

  • Calabrese EJ, (1999) Evidence that hormesis represents an overcompensation response to a disruption in homeostasis. Ecotoxicol Environ Saf 42:35–137

    Article  PubMed  Google Scholar 

  • Campos J, Martinez-Pacheco M, Cervantes C (1995) Hexavalent chromium reduction by a chromate resistant Bacillus sp strain. Antonie van Leeuwenhoek 6:203–208

    Article  Google Scholar 

  • Chen BY, Liu HL, Chen YW, Cheng YC (2004) Dose-response assessment of metal toxicity upon indigenous Thiobacillus thiooxidans BC1. Process Biochem 39:735–745

    Google Scholar 

  • Christofi N, Hoffmann C, Tosh L (2002) Hormesis responses of free and immobilized light emitting bacteria. Ecotoxicol Environ Saf 52:227–231

    Article  PubMed  Google Scholar 

  • Delmas F, Villaescusa I, Woo NYS, Soleilhavoup JP, Murat JC (2000) A cellular method for the evaluation of the noxiousness of inorganic pollutants in industrial wastes: Calculation of a safety index for monitoring sludge discharge. Ecotoxicol Environ Saf 45:260–265

    Article  PubMed  Google Scholar 

  • Desjardin V, Bayard R, Lejeune P, Gourdon R (2003) Utilization of supernatants of pure cultures of Streptomyces thermocarboxydus to reduce chromium toxicity and mobility in contaminated soils. Water Air Soil Pollut 3:153–160

    Google Scholar 

  • Di Pietro A, Scoglio ME, Anzalone C, Calimeri S, LoGiudice D, Marino A (2000) Effect of metal mixtures on Salmonella enteritidis viability in synthetic sewage. Ann Ig 12:469–478

    PubMed  Google Scholar 

  • Fulladosa E, Murat JC, Martinez M, Villaescusa I (2004a) Effect of pH on arsenate and arsenite toxicity to luminescent bacteria (Vibrio fischeri). Arch Environ Contam Toxicol 46:176–183

    Google Scholar 

  • Fulladosa E, Desjardin V, Villaescusa I, Gourdon R (2004b) Toxic effect and reduction of Cr(VI) in Vibrio fischeri bacteria. Environ Toxicol Chem (submitted)

  • Gaubin Y, Vaissade F, Croute F, Beau B, Soleilhavoup JP, Murat JC (2000) Implication of free radicals and glutathione in the mechanism of cadmium-induced expression of stress proteins in the A549 cell-line. Biochim Biophys Acta 1495:4–13

    PubMed  Google Scholar 

  • Gellert G (2000) Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and luminescence. Ecotoxicol Environ Saf 45:87–91

    Article  PubMed  Google Scholar 

  • Gellert G, Stommel A, Trujillano M (1999) Development of an optimal bacterial medium based on the growth inhibition assay with Vibrio fischeri. Chemosphere 39:467–476

    Article  PubMed  Google Scholar 

  • Hsieh CY, Tsai MH, Ryan DK, Pancorbo OC (2004) Toxicity of the 13 priority pollutant metals to Vibrio fischeri in the Microtox chronic toxicity test. Sci Total Environ 320:37–50

    Google Scholar 

  • Ince NH, Dirilgen N, Apikyan IG, Tezcanli G, Ûstün B (1999) Assessment of toxic interactions of heavy metals in binary mixtures: A statistical approach. Arch Environ Contam Toxicol 36:365–372

    PubMed  Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    PubMed  Google Scholar 

  • Jonas RB, Gilmour CC, Stoner DL, Weir MM, Tuttle JH (1984) Comparison of methods to measure acute metal and organometal toxicity to natural aquatic microbial communities. Appl Environ Microbiol 47:1005–1011

    PubMed  Google Scholar 

  • Landis WG, Yu MH (1999) Introduction to environmental toxicology. Impact of chemicals upon ecological systems. CRC, Boca Raton, FL

    Google Scholar 

  • Laxman RS, More S (2002) Reduction of hexavalent chromium by Streptomyces griseus. Miner Eng 15:831–837

    Article  Google Scholar 

  • Nepple BB, Flynn I, Bachofen (1999) Morphological changes in phototrophic bacteria induced by metalloid oxyanions. Microbiol Res 154:191–198

    Google Scholar 

  • Ota N, Galsworthy PR, Pardee AB (1971) Genetics of sulphate transport by Salmonella typhimurium. J Bacteriol 105:1053–1062

    PubMed  Google Scholar 

  • Pichereau V, Hartke A, Auffray Y (2000) Starvation and osmotic stress induced multiresistance influence of extracellular compounds. Int J Food Microbiol 55:19–25

    Article  PubMed  Google Scholar 

  • Puigdomenech I, (2004) Chemical species software (MEDUSA and HYDRA). Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  • Ren S, Frymier PD (2003) Use of multidimensional scaling in the selection of wastewater toxicity test battery components. Water Res 37:1655–1661

    Article  PubMed  Google Scholar 

  • Reynolds KL, Neher DA (1997) Statistical comparison of epidemics. In: Franck LJ, Neher DA (eds) Exercises in plant disease epidemiology. APS Press, St. Paul, MN, p 34

    Google Scholar 

  • Schmitz RPH, Eisenträger A, Dott W (1999) Agonistic and antagonistic toxic effects observed with miniaturized growth and luminescence inhibition assays. Chemosphere 38:79–95

    Article  PubMed  Google Scholar 

  • Shi B, Xia X (2003) Morphological changes of Pseudomonas pseudoalcaligenes in response to temperature selection. Curr Microbiol 46:120–123

    Article  PubMed  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions: A review. Gene 179:9–19

    Article  PubMed  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: New surprises. Ann Rev Microbiol 50:753–789

    Article  Google Scholar 

  • Villaescusa I, Martinez M, Murat JC, Costa C (1996) Cadmium species toxicity on luminescent bacteria. Fresen J Anal Chem 354:566–570

    Google Scholar 

  • Villaescusa I, Marti S, Matas C, Martinez M, Ribó JM (1997) Chromium toxicity to luminescent bacteria. Environ Toxicol Chem 16:871–874

    Article  Google Scholar 

  • Villaescusa I, Matas S, Martinez M, Murat JC (1998) Evaluation of lead and nickel toxicity in NaCl or NaClO4 by using the Microtox bioassay. Fresen J Anal Chem 361:55–358

    Article  Google Scholar 

  • Zhang S, Crow S (2001) Toxic effects of Ag(I) and Hg(II) on Candida albicans and C. maltosa: A flow cytometric evaluation. Appl Environ Microbiol 67:4030–4035

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to Wouter Marcelis for helping in the experimental work. This research was supported by Ministerio de Ciencia y Tecnología, Spain (Project No. PPQ2002-04131-C02-02). The authors also thank Generalitat de Catalunya, Spain, for the grant for researchers mobility (Grant No. ACI2003-52).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Villaescusa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulladosa, E., Murat, J.C. & Villaescusa, I. Effect of Cadmium(II), Chromium(VI), and Arsenic(V) on Long-Term Viability- and Growth-Inhibition Assays Using Vibrio fischeri Marine Bacteria. Arch Environ Contam Toxicol 49, 299–306 (2005). https://doi.org/10.1007/s00244-004-0170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-004-0170-5

Keywords

Navigation