Skip to main content
Log in

Physical therapy in the management of stone fragments: progress, status, and needs

  • Review
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

With an increased risk of symptomatic events, the complications related to residual fragments are complex and intractable. The management of stone fragments is a challenge to urologists. This review focused on the progress, status, and needs of the newly developed physical therapies to remove fragments and improve the stone-free rate. Physical therapies, including mechanical percussion, diuresis, and inversion therapy, ultrasonic propulsion technology, glue–clot technology, and magnetization technology, will facilitate progress in endoscopic stone fragment retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BWL:

Burst wave lithotripsy

CIRF:

Clinically insignificant residual fragment(s)

fURS:

Flexible URS

Fe-MP:

Iron oxide microparticle(s)

PBS:

Phosphate-buffered saline

PDI:

Percussion, diuresis, and inversion

PNL:

Percutaneous nephrolithotomy

RF:

Residual fragment(s)

RIRS:

Retrograde intra-renal surgery

SWL:

Shock wave lithotripsy

SFR:

Stone-free rate

SIRF:

Significant residual fragment(s)

URS:

Ueterorenoscope

UAS:

Ureteral access sheath

UPJ:

Ureteropelvic junction

References

  1. Türk C, Petřík A, Sarica K et al (2015) EAU guidelines on diagnosis and conservative management of urolithiasis. Eur Urol 69:468–474

    Article  PubMed  Google Scholar 

  2. Heers H, Turney BW (2016) Trends in urological stone disease: a 5-year update of hospital episode statistics. BJU Int 118:785–789

    Article  PubMed  Google Scholar 

  3. Osman MM, Alfano Y, Kamp S et al (2005) 5-year-follow-up of patients with clinically insignificant residual fragments after extracorporeal shockwave lithotripsy. Eur Urol 47:860–864

    Article  PubMed  Google Scholar 

  4. Skolarikos A, Alivizatos G, de la Rosette J (2006) Extracorporeal shock wave lithotripsy 25 years later: complications and their prevention. Eur Urol 50:981–990 (discussion 990)

    Article  PubMed  Google Scholar 

  5. Madbouly K, Sheir KZ, Elsobky E et al (2002) Risk factors for the formation of a steinstrasse after extracorporeal shock wave lithotripsy: a statistical model. J Urol 167:1239–1242

    Article  PubMed  Google Scholar 

  6. Sayed MA, el-Taher AM, Aboul-Ella HA et al (2001) Steinstrasse after extracorporeal shockwave lithotripsy: aetiology, prevention and management. BJU Int 88:675–678

    Article  PubMed  CAS  Google Scholar 

  7. Streem SB, Yost A, Mascha E (1996) Clinical implications of clinically insignificant store fragments after extracorporeal shock wave lithotripsy. J Urol 155:1186–1190

    Article  PubMed  CAS  Google Scholar 

  8. Chew BH, Brotherhood HL, Sur RL et al (2016) Natural history, complications and re-intervention rates of asymptomatic residual stone fragments after ureteroscopy: a report from the EDGE research consortium. J Urol 195:982–986

    Article  PubMed  Google Scholar 

  9. Ganpule A, Desai M (2009) Fate of residual stones after percutaneous nephrolithotomy: a critical analysis. J Endourol 23:399–403

    Article  PubMed  Google Scholar 

  10. Turk C, Petrik A, Sarica K et al (2016) EAU guidelines on interventional treatment for urolithiasis. Eur Urol 69:475–482

    Article  PubMed  Google Scholar 

  11. Olvera-Posada D, Ali SN, Dion M et al (2016) Natural history of residual fragments after percutaneous nephrolithotomy: evaluation of factors related to clinical events and intervention. Urology 97:46–50

    Article  PubMed  Google Scholar 

  12. Muller-Mattheis VG, Schmale D, Seewald M et al (1991) Bacteremia during extracorporeal shock wave lithotripsy of renal calculi. J Urol 146:733–736

    Article  PubMed  CAS  Google Scholar 

  13. Tan YM, Yip SK, Chong TW et al (2002) Clinical experience and results of ESWL treatment for 3,093 urinary calculi with the Storz Modulith SL 20 lithotripter at the Singapore general hospital. Scand J Urol Nephrol 36:363–367

    Article  PubMed  CAS  Google Scholar 

  14. Ather MH, Shrestha B, Mehmood A (2009) Does ureteral stenting prior to shock wave lithotripsy influence the need for intervention in steinstrasse and related complications? Urol Int 83:222–225

    Article  PubMed  CAS  Google Scholar 

  15. Altunrende F, Tefekli A, Stein RJ et al (2011) Clinically insignificant residual fragments after percutaneous nephrolithotomy: medium-term follow-up. J Endourol 25:941–945

    Article  PubMed  Google Scholar 

  16. Buchholz NP, Meier-Padel S, Rutishauser G (1997) Minor residual fragments after extracorporeal shockwave lithotripsy: spontaneous clearance or risk factor for recurrent stone formation? J Endourol 11:227–232

    Article  PubMed  CAS  Google Scholar 

  17. Ozgor F, Simsek A, Binbay M et al (2014) Clinically insignificant residual fragments after flexible ureterorenoscopy: medium-term follow-up results. Urolithiasis 42:533–538

    Article  PubMed  Google Scholar 

  18. Khaitan A, Gupta NP, Hemal AK et al (2002) Post-ESWL, clinically insignificant residual stones: reality or myth? Urology 59:20–24

    Article  PubMed  Google Scholar 

  19. Saglam R, Muslumanoglu AY, Tokatli Z et al (2014) A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1-2b). Eur Urol 66:1092–1100

    Article  PubMed  Google Scholar 

  20. Desai MM, Grover R, Aron M et al (2011) Robotic flexible ureteroscopy for renal calculi: initial clinical experience. J Urol 186:563–568

    Article  PubMed  Google Scholar 

  21. Desai MM, Aron M, Gill IS et al (2008) Flexible robotic retrograde renoscopy: description of novel robotic device and preliminary laboratory experience. Urology 72:42–46

    Article  PubMed  Google Scholar 

  22. Hein S, Miernik A, Wilhelm K et al (2016) Clinical significance of residual fragments in 2015: impact, detection, and how to avoid them. World J Urol 34:771–778

    Article  PubMed  Google Scholar 

  23. Schmidt S, Wilhelm K (2015) Percussion, diuresis, and inversion therapy for the passage of lower pole kidney stones following shock wave lithotripsy. Urol A 54:1609–1612

    Article  CAS  Google Scholar 

  24. Long Q, Zhang J, Xu Z et al (2015) A prospective randomized controlled trial of the efficacy of external physical vibration lithecbole after extracorporeal shock wave lithotripsy for a lower pole renal stone <2 cm in a single center. J Urol 195:965–970

    Article  PubMed  Google Scholar 

  25. May PC, Bailey MR, Harper JD (2016) Ultrasonic propulsion of kidney stones. Curr Opin Urol 26:264–270

    Article  PubMed  PubMed Central  Google Scholar 

  26. Harper JD, Cunitz BW, Dunmire B et al (2016) First in human clinical trial of ultrasonic propulsion of kidney stones. J Urol 195:956–964

    Article  PubMed  Google Scholar 

  27. Hein S, Schoenthaler M, Wilhelm K et al (2016) Novel biocompatible adhesive for intrarenal embedding and endoscopic removal of small residual fragments after minimally invasive stone treatment in an ex vivo porcine kidney model: initial evaluation of a prototype. J Urol 196:1772–1777

    Article  PubMed  CAS  Google Scholar 

  28. Cloutier J, Cordeiro ER, Kamphuis GM et al (2014) The glue–clot technique: a new technique description for small calyceal stone fragments removal. Urolithiasis 42:441–444

    Article  PubMed  CAS  Google Scholar 

  29. Tracy CR, McLeroy SL, Best SL et al (2010) Rendering stone fragments paramagnetic with iron-oxide microparticles improves the efficiency and effectiveness of endoscopic stone fragment retrieval. Urology 76(1266):e1210–e1264

    Google Scholar 

  30. Kirsch E, von Ardenne M, Reitnauer PG (1965) A recently developed vibrating chair and its significance in the conservative treatment of urolithiasis. Concluding remarks. Z Urol Nephrol 58:225–236

    PubMed  CAS  Google Scholar 

  31. Cottet J, Wisner A (1967) Expulsive treatment of urinary calculi by externally controlled mechanical vibrations. Bull Mem Soc Med Hop Paris 119:383–388

    PubMed  CAS  Google Scholar 

  32. Cottet J, Wisner A, Berthoz A (1968) Application of mechanical vibrations to expulsive treatment of urinary calculi. Bull Acad Natl Med 152:111–119

    PubMed  CAS  Google Scholar 

  33. Golubchikov VA (1969) Method of general vibration in the therapy of ureteral calculi. Urol Nefrol (Mosk) 34:19–23

    CAS  Google Scholar 

  34. Cottet J, Auvert J (1969) Expulsion treatment of urinary calculi by the association of diuresis and mechanical actions. J Urol Nephrol (Paris) 75:672–677

    CAS  Google Scholar 

  35. Zomorrodi A, Golivandan J, Samady J (2008) Effect of diuretics on ureteral stone therapy with extracorporeal shock wave lithotripsy. Saudi J Kidney Dis Transpl 19:397–400

    PubMed  CAS  Google Scholar 

  36. Chaussy C, Schuller J, Schmiedt E et al (1984) Extracorporeal shock-wave lithotripsy (ESWL) for treatment of urolithiasis. Urology 23:59–66

    Article  PubMed  CAS  Google Scholar 

  37. Brownlee N, Foster M, Griffith DP et al (1990) Controlled inversion therapy: an adjunct to the elimination of gravity-dependent fragments following extracorporeal shock wave lithotripsy. J Urol 143:1096–1098

    Article  PubMed  CAS  Google Scholar 

  38. Pace KT, Tariq N, Dyer SJ et al (2001) Mechanical percussion, inversion and diuresis for residual lower pole fragments after shock wave lithotripsy: a prospective, single blind, randomized controlled trial. J Urol 166:2065–2071

    Article  PubMed  CAS  Google Scholar 

  39. Liu LR, Li QJ, Wei Q et al (2013) Percussion, diuresis, and inversion therapy for the passage of lower pole kidney stones following shock wave lithotripsy. Cochrane Database Syst Rev. doi:10.1002/14651858.CD008569.pub2

  40. Lee SW, Chaiyakunapruk N, Chong HY et al (2015) Comparative effectiveness and safety of various treatment procedures for lower pole renal calculi: a systematic review and network meta-analysis. BJU Int 116:252–264

    Article  PubMed  Google Scholar 

  41. Kosar A, Ozturk A, Serel TA et al (1999) Effect of vibration massage therapy after extracorporeal shockwave lithotripsy in patients with lower caliceal stones. J Endourol 13:705–707

    Article  PubMed  CAS  Google Scholar 

  42. D’A Honey RJ, Luymes J, Weir MJ et al (2000) Mechanical percussion inversion can result in relocation of lower pole stone fragments after shock wave lithotripsy. Urology 55:204–206

    Article  PubMed  Google Scholar 

  43. Chiong E, Hwee ST, Kay LM et al (2005) Randomized controlled study of mechanical percussion, diuresis, and inversion therapy to assist passage of lower pole renal calculi after shock wave lithotripsy. Urology 65:1070–1074

    Article  PubMed  Google Scholar 

  44. Albanis S, Ather HM, Papatsoris AG et al (2009) Inversion, hydration and diuresis during extracorporeal shock wave lithotripsy: does it improve the stone-free rate for lower pole stone clearance? Urol Int 83:211–216

    Article  PubMed  Google Scholar 

  45. Leong WS, Liong ML, Liong YV et al (2014) Does simultaneous inversion during extracorporeal shock wave lithotripsy improve stone clearance: a long-term, prospective, single-blind, randomized controlled study. Urology 83:40–44

    Article  PubMed  Google Scholar 

  46. Shah A, Owen NR, Lu W et al (2010) Novel ultrasound method to reposition kidney stones. Urol Res 38:491–495

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shah A, Harper JD, Cunitz BW et al (2012) Focused ultrasound to expel calculi from the kidney. J Urol 187:739–743

    Article  PubMed  Google Scholar 

  48. Harper JD, Sorensen MD, Cunitz BW et al (2013) Focused ultrasound to expel calculi from the kidney: safety and efficacy of a clinical prototype device. J Urol 190:1090–1095

    Article  PubMed  PubMed Central  Google Scholar 

  49. Connors BA, Evan AP, Blomgren PM et al (2014) Comparison of tissue injury from focused ultrasonic propulsion of kidney stones versus extracorporeal shock wave lithotripsy. J Urol 191:235–241

    Article  PubMed  Google Scholar 

  50. Wang YN, Simon JC, Cunitz BW et al (2014) Focused ultrasound to displace renal calculi: threshold for tissue injury. J Ther Ultrasound 2:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Maxwell AD, Cunitz BW, Kreider W et al (2015) Fragmentation of urinary calculi in vitro by burst wave lithotripsy. J Urol 193:338–344

    Article  PubMed  Google Scholar 

  52. Patel A (2008) Lower calyceal occlusion by autologous blood clot to prevent stone fragment reaccumulation after retrograde intra-renal surgery for lower calyceal stones: first experience of a new technique. J Endourol 22:2501–2506

    Article  PubMed  Google Scholar 

  53. Mir SA, Best SL, McLeroy S et al (2011) Novel stone-magnetizing microparticles: in vitro toxicity and biologic functionality analysis. J Endourol 25:1203–1207

    Article  PubMed  Google Scholar 

  54. Tan YK, Best SL, Donnelly C et al (2012) Novel iron oxide microparticles used to render stone fragments paramagnetic: assessment of toxicity in a murine model. J Urol 188:1972–1977

    Article  PubMed  CAS  Google Scholar 

  55. Tan YK, McLeroy SL, Faddegon S et al (2012) In vitro comparison of prototype magnetic tool with conventional nitinol basket for ureteroscopic retrieval of stone fragments rendered paramagnetic with iron oxide microparticles. J Urol 188:648–652

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Wang.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. No informed consent was necessary for the article, because all patient identifiers were expunged from the reviews.

Conflict of interest

The authors declare that there are no conflicts of interest for this article.

Funding

This study was supported by grants from the National Natural Science Foundation of China (Grant No. 81372733), Major Project of Gansu Provincial Science and Technology Department of China (Grant No. 1203FKDA032), and Gansu Provincial Science Fund for Young Scholars of China (Grant No. 1506RJYA247).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, S., Gai, Q., Zhao, X. et al. Physical therapy in the management of stone fragments: progress, status, and needs. Urolithiasis 46, 223–229 (2018). https://doi.org/10.1007/s00240-017-0988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-017-0988-8

Keywords

Navigation