Skip to main content
Log in

Osteopontin knockdown in the kidneys of hyperoxaluric rats leads to reduction in renal calcium oxalate crystal deposition

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Osteopontin (OPN) expression is increased in kidneys of rats with ethylene glycol (EG) induced hyperoxaluria and calcium oxalate (CaOx) nephrolithiasis. The aim of this study is to clarify the effect of OPN knockdown by in vivo transfection of OPN siRNA on deposition of CaOx crystals in the kidneys. Hyperoxaluria was induced in 6-week-old male Sprague–Dawley rats by administering 1.5 % EG in drinking water for 2 weeks. Four groups of six rats each were studied: Group A, untreated animals (tap water); Group B, administering 1.5 % EG; Group C, 1.5 % EG with in vivo transfection of OPN siRNA; Group D, 1.5 % EG with in vivo transfection of negative control siRNA. OPN siRNA transfections were performed on day 1 and 8 by renal sub-capsular injection. Rats were killed at day 15 and kidneys were removed. Extent of crystal deposition was determined by measuring renal calcium concentrations and counting renal crystal deposits. OPN siRNA transfection resulted in significant reduction in expression of OPN mRNA as well as protein in group C compared to group B. Reduction in OPN expression was associated with significant decrease in crystal deposition in group C compared to group B. Specific suppression of OPN mRNA expression in kidneys of hyperoxaluric rats leads to a decrease in OPN production and simultaneously inhibits renal crystal deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J (2002) Osteopontin—a molecule for all seasons. QJM 95:3–13

    Article  CAS  PubMed  Google Scholar 

  2. McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 10:1913–1929

    Article  CAS  PubMed  Google Scholar 

  3. Evan AP, Bledsoe SB, Smith SB, Bushinsky DA (2004) Calcium oxalate crystal localization and osteopontin immunostaining in genetic hypercalciuric stone-forming rats. Kidney Int 65:154–161

    Article  CAS  PubMed  Google Scholar 

  4. Kohri K, Yasui T, Okada A, Hirose M, Hamamoto S, Fujii Y, Niimi K, Taguchi K (2012) Biomolecular mechanism of urinary stone formation involving osteopontin. Urol Res 40:623–637

    Article  CAS  PubMed  Google Scholar 

  5. Wesson JA, Ward MD (2006) Role of crystal surface adhesion in kidney stone disease. Curr Opin Nephrol Hypertens 15:386–393

    Article  CAS  PubMed  Google Scholar 

  6. Khan SR (2004) Role of renal epithelial cells in the initiation of calcium oxalate stones. Nephron Exp Nephrol 98:e55–e60

    Article  CAS  PubMed  Google Scholar 

  7. Khan SR (2013) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189:803–811

    Article  CAS  PubMed  Google Scholar 

  8. Khan SR, Glenton PA, Byer KJ (2006) Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-l-proline. Kidney Int 70:914–923

    Article  CAS  PubMed  Google Scholar 

  9. Khan SR (1997) Animal models of kidney stone formation: an analysis. World J Urol 15:236–243

    Article  CAS  PubMed  Google Scholar 

  10. Khan SR, Johnson JM, Peck AB, Cornelius JG, Glenton PA (2002) Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol 168:1173–1181

    Article  CAS  PubMed  Google Scholar 

  11. Katsuma S, Shiojima S, Hirasawa A, Takagi K, Kaminishi Y, Koba M, Hagidai Y, Murai M, Ohgi T, Yano J, Tsujimoto G (2002) Global analysis of differentially expressed genes during progression of calcium oxalate nephrolithiasis. Biochem Biophys Res Commun 296:544–552

    Article  CAS  PubMed  Google Scholar 

  12. Umekawa T, Chegini N, Khan SR (2002) Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. Kidney Int 61:105–112

    Article  CAS  PubMed  Google Scholar 

  13. Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482

    Article  CAS  PubMed  Google Scholar 

  14. Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR (2007) Renal calcinosis and stone formation in mice lacking osteopontin, Tamm–Horsfall protein, or both. Am J Physiol Renal Physiol 293:F1935–F1943

    Article  CAS  PubMed  Google Scholar 

  15. Wesson JA, Johnson RJ, Mazzali M, Wesson JA, Johnson RJ, Mazzali M, Beshensky AM, Stietz S, Giachelli C, Liaw L, Alpers CE, Couser WG, Kleinman JG, Hughes J (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14:139–147

    Article  CAS  PubMed  Google Scholar 

  16. Hamamoto S, Nomura S, Yasui T, Okada A, Hirose M, Shimizu H, Itoh Y, Tozawa K, Khori K (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: analyses of OPN transgenic and OPN knockout mice. J Bone Miner Res 25:2712–2723

    PubMed  Google Scholar 

  17. Umekawa T, Hatanaka Y, Kurita T, Khan SR (2004) Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J Am Soc Nephrol 15:635–644

    Article  CAS  PubMed  Google Scholar 

  18. Giachelli CM, Lombardi D, Johnson RJ, Murry CE, Almeida M (1998) Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am J Pathol 152:353–358

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Knight JA (1998) Free radicals: their history and current status in aging and disease. Ann Clin Lab Sci 28:331–346

    CAS  PubMed  Google Scholar 

  20. Wilcox CS, Welch WJ (2001) Oxidative stress: cause or consequence of hypertension. Exp Biol Med (Maywood) 226:619–620

    CAS  Google Scholar 

  21. Ricardo SD, Franzoni DF, Roesener CD, Crisman JM, Diamond JR (2000) Angiotensinogen and AT(1) antisense inhibition of osteopontin translation in rat proximal tubular cells. Am J Physiol Renal Physiol 278:F708–F716

    CAS  PubMed  Google Scholar 

  22. Toblli JE, Ferder L, Stella I, De Cavanaugh EM, Angerosa M, Inserra F (2002) Effects of angiotensin II subtype 1 receptor blockade by losartan on tubulointerstitial lesions caused by hyperoxaluria. J Urol 168:1550–1555

    Article  CAS  PubMed  Google Scholar 

  23. Toblli JE, Ferder L, Stella I, Angerosa M, Inserra F (2001) Protective role of enalapril for chronic tubulointerstitial lesions of hyperoxaluria. J Urol 166:275–280

    Article  CAS  PubMed  Google Scholar 

  24. Zuo J, Khan A, Glenton PA, Khan SR (2011) Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-l-proline-induced hyperoxaluria in the male Sprague–Dawley rats. Nephrol Dial Transpl 26:1785–1796

    Article  CAS  Google Scholar 

  25. Joshi S, Saylor BT, Wang W, Peck AB, Khan SR (2012) Apocynin-treatment reverses hyperoxaluria induced changes in NADPH oxidase system expression in rat kidneys: a transcriptional study. PLoS One 7:e47738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Khan SR, Glenton PA (2010) Experimental induction of calcium oxalate nephrolithiasis in mice. J Urol 184:1189–1196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Khan SR (2010) Nephrocalcinosis in animal models with and without stones. Urol Res 38:429–438

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hunter GK (2013) Role of osteopontin in modulation of hydroxyapatite formation. Calcif Tissue Int 93:348–354

    Article  CAS  PubMed  Google Scholar 

  29. Yamate T, Kohri K, Umekawa T, Konya E, Ishikawa Y, Iguchi M, Kurita T (1999) Interaction between osteopontin on Madin Darby canine kidney cell membrane and calcium oxalate crystal. Urol Int 62:81–86

    Article  CAS  PubMed  Google Scholar 

  30. Kumar V, Pena de la Vega L, Farell G, Lieske JC (2005) Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int 68:1784–1792

    Article  PubMed  Google Scholar 

  31. Khan SR, Rodriguez DE, Gower LB, Monga M (2012) Association of Randall plaque with collagen fibers and membrane vesicles. J Urol 187:1094–1100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23:194–199

    Article  CAS  PubMed  Google Scholar 

  33. Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160

    Article  PubMed Central  PubMed  Google Scholar 

  34. Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (Hoboken) 290:1315–1323

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grants “kidney disease” from the Osaka Kidney Bank. Dr. Khan’s research is supported by National Institute of Health grant # RO1-DK 078602.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Tsuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuji, H., Shimizu, N., Nozawa, M. et al. Osteopontin knockdown in the kidneys of hyperoxaluric rats leads to reduction in renal calcium oxalate crystal deposition. Urolithiasis 42, 195–202 (2014). https://doi.org/10.1007/s00240-014-0649-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-014-0649-0

Keywords

Profiles

  1. Nobutaka Shimizu