Skip to main content
Log in

Structure and formation mechanism of calcium phosphate concretions formed in simulated body fluid

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Synthetic calcium phosphate (CaP) concretions in the form of hemispheres formed under carefully controlled conditions (pH 7.4, 37 °C, no evaporation) from stagnant simulated body fluid on anionic polymeric substrate (laminin) were observed by scanning and transmission electron microscopy and atomic force microscopy. The hemispheres with diameter between approximately 50 and 200 μm were composed of closely connected round spherical and elliptical objects of diameter varying from 70 to 120 nm with surface layer composed of tightly packed spherical objects of diameter 25–30 nm. The phase composition of concretions consisting of amorphous material was uniform. The concretions were formed by aggregation of CaP clusters (Posner’s clusters Ca9(PO4)3 or [Ca3(PO4)2] n ) generated in the solution by perikinetic coagulation, their settling onto a substrate and subsequent accumulation through surface migration (surface nucleation) followed by accretion of nanoparticles arriving from surrounding solution. The similarity of ultrafine structures of these synthetic CaP concretions and the compact phosphatic phase appearing in some phosphate calculi indicates that analogous mechanisms could be active at the formation of the latter in the kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grases F, Costa Bauza A, Prieto RM, Gomila I, Pieras E, Söhnel O (2011) Non-infectious phosphate renal calculi: fine structure, chemical and phase composition. Scand J Clin Lab Investig 71:407–412

    Article  CAS  Google Scholar 

  2. Carpentier X, Daudon M, Traxer O, Jungers P, Mazouyes A, Matzem G, Veron E, Bazin D (2009) Relationships between carbonation rate of carbapatite and morphologic Characteristics of calcium phosphate stones and etiology. Urology 73(5):968–975

    Article  PubMed  Google Scholar 

  3. Meyer AS, Finlayson B, DuBois L (1971) Direct observation of urinary stone Ultrastructure. Brit J Urol 43:154–163

    Article  CAS  PubMed  Google Scholar 

  4. Grases F, Söhnel O, Vilacampa AI, March JG (1996) Phosphates precipitating from artificial urine and fine structure of phosphate renal calculi. Clin Chim Acta 244:45–67

    Article  CAS  PubMed  Google Scholar 

  5. Kim KM (1982) The stones. Scanning Electron Microscopy (Pt4):1635–1660

  6. Zelenková M, Söhnel O, Grases F (2012) Ultra-fine structure of the hydroxyapatite amorphous phase in non-infectious phosphate renal calculi. Urology

  7. Söhnel O, Grases F (2011) Supersaturation of body fluids, plasma and urine, with respect to biological hydroxyapatite. Urol Res 39:429–436

    Article  PubMed  Google Scholar 

  8. Li J, Liao H, Sjostrom M (1997) Characterization of calcium phosphates precipitated from simulated body fluid of different buffering capacities. Biomaterials 18:743–747

    Article  CAS  PubMed  Google Scholar 

  9. Lu X, Yang L (2005) Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 26:1097–1108

    Article  CAS  PubMed  Google Scholar 

  10. Kanzaki N, Treboux G, Onma K, Tsutsumi S, Ito A (2001) Calcium phosphate clusters. Biomaterials 22:2921–2929

    Article  CAS  PubMed  Google Scholar 

  11. Ganesan K, Apple M (2008) Calcium phosphate nanoparticles as nuclei for the preparation of collodial calcium phytate. New J Chem 23:1326–1330

    Article  Google Scholar 

  12. Onuma K, Ito A (1998) Cluster growth model for hydroxyapatite. Chem Mater 10:3346–3351

    Article  CAS  Google Scholar 

  13. Oyane A, Onuma K, Kokubo T, Ito A (1999) Clustering of calcium phosphate in the system CaCl2-H3PO4-KCl-H2O. J Phys Chem B 15:6557–6562

    Google Scholar 

  14. Söhnel O, Garside J (1992) Precipitation: Basic principles and Industrial Applications. Butterworth, Oxford, p 145, p 187. ISBN 0 7056 1107 3

  15. Suemitsu M, Togashi H, Abe T (2003) Autocatalytic reaction model: a phenomenology for nucleation coalescence-growth of thin films. Thin Solid Films 428:83–86

    Article  CAS  Google Scholar 

  16. Petrov I, Barna PB, Hulman L, Greene JE (2003) Microstructural evolution during film growth. J Vac Sci Technik 21:S117–S128

    Article  CAS  Google Scholar 

  17. Rhee S-H, Tahala J (1998) Hydroxyapatite coating on a colagen membrane by a biomimetic method. J Am Ceram Soc 81:3029–3031

    Article  CAS  Google Scholar 

  18. Rhee S-H, Lee JD, Tanaka J (2000) Nucleation of hydroxyapatite through chemical interaction with colagen. J Am Ceram Soc 83:2890–2892

    Article  CAS  Google Scholar 

  19. Takeuchi A, Ohtsuki Ch, Miyazaki T et al (2005) Heterogeneous nucleation of hydroxyapatite on protein:structural effect of silk sericin. J R Soc Interface 2:373–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Feenstra TP, de Bruyn PL (1980) Light scattering studies on solutions containing calcuim phosphate. J Coll Interface Sci 71:431–437

    Article  Google Scholar 

  21. Kibalczyc W, Bondarczuk K (1985) Light scattering study of calcium phosphate Precipitation. J Cyst Growth 71:751–756

    Article  CAS  Google Scholar 

  22. Koutsopoulos S (2001) Kinetic study on the crystal growth of hydroxyapatite. Langmuir 17:8092–8097

    Article  CAS  Google Scholar 

  23. Ganesan K, Epple M (2008) Calcium phosphate nanoparticles as nuclei for the preparation of colloidal calcium phytate. New J Chem 32:1326–1330

    Article  CAS  Google Scholar 

  24. Matsui I, Hamano T, Mikami S, Fuji N, Takabatake Y, Nagasawa Y, Kawada N, Ito T, Rakugi H, Imai E, Isaka Y (2009) Fully phosphorilated fetuin-A forms a mineral complex in the serum of rats with adenine-induced renal failure. Kidney Int 75(9):915–928

    Article  CAS  PubMed  Google Scholar 

  25. Pasch A, Farese S, Graber S, Wald J, Richtering W, Floege J, Jahnen-Dechent W (2012) Nanoparticle-based test measures overall propensity for calcification in serum. J Am Soc Nephrol 23(10):1744–1752

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the project CTQ2010-18271/PPQ from t Ministerio de Ciencia e Innovación (Gobierno de España), FEDER funds (European Union) and the project grant 9/2011 from the Conselleria d’Educació, Cultura i Universitat (Govern de les Illes Balears).

Conflict of interest

The authors declare that they have no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Grases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grases, F., Zelenková, M. & Söhnel, O. Structure and formation mechanism of calcium phosphate concretions formed in simulated body fluid. Urolithiasis 42, 9–16 (2014). https://doi.org/10.1007/s00240-013-0611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-013-0611-6

Keywords

Navigation