Skip to main content

Advertisement

Log in

Identification and Analysis of OVATE Family Members from Genome of the Early Land Plants Provide Insights into Evolutionary History of OFP Family and Function

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Mosses, liverworts, hornworts and lycophytes represent transition stages between the aquatic to terrestrial/land plants. Several morphological and adaptive novelties driven by genomic components including emergence and expansion of new or existing gene families have played a critical role during and after the transition, and contributed towards successful colonization of terrestrial ecosystems. It is crucial to decipher the evolutionary transitions and natural selection on the gene structure and function to understand the emergence of phenotypic and adaptive diversity. Plants at the “transition zone”, between aquatic and terrestrial ecosystem, are also the most vulnerable because of climate change and may contain clues for successful mitigation of the challenges of climate change. Identification and comparative analyses of such genetic elements and gene families are few in mosses, liverworts, hornworts and lycophytes. Ovate family proteins (OFPs) are plant-specific transcriptional repressors and are acknowledged for their roles in important growth and developmental processes in land plants, and information about the functional aspects of OFPs in early land plants is fragmentary. As a first step towards addressing this gap, a comprehensive in silico analysis was carried out utilizing publicly available genome sequences of Marchantia polymorpha (Mp), Physcomitrella patens (Pp), Selaginella moellendorffii (Sm) and Sphagnum fallax (Sf). Our analysis led to the identification of 4 MpOFPs, 19 PpOFPs, 6 SmOFPs and 3 SfOFPs. Cross-genera analysis revealed a drastic change in the structure and physiochemical properties in OFPs suggesting functional diversification and genomic plasticity during the evolutionary course. Knowledge gained from this comparative analysis will form the framework towards deciphering and dissection of their developmental and adaptive role/s in early land plants and could provide insights into evolutionary strategies adapted by land plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aftabuddin M, Kundu S (2007) Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophys J 93:225–231

    Article  CAS  PubMed  Google Scholar 

  • Baniaga AE, Arrigo N, Barker MS (2016) The small nuclear genomes of Selaginella are associated with a low rate of genome size evolution. Genome Biol Evol 8:1516–1525

    Article  PubMed Central  PubMed  Google Scholar 

  • Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, de Pamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW, Axtell MJ, Barker E, Barker MS, Bennetzen JL, Bonawitz ND, Chapple C, Cheng C, Correa LGG, Dacre M, DeBarry J, Dreyer I, Elias M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, Gramzow L, Gutensohn M, Harholt J, Hattori M, Heyl A, Hirai T, Hiwatashi Y, Ishikawa M, Iwata M, Karol KG, Koehler B, Kolukisaoglu U, Kubo M, Kurata T, Lalonde S, Li K, Li Y, Litt A, Lyons E, Manning G, Maruyama T, Michael TP, Mikami K, Miyazaki S, Morinaga S, Murata T, Mueller-Roeber B, Nelson DR, Obara M, Oguri Y, Olmstead RG, Onodera N, Petersen BL, Pils B, Prigge M, Rensing SA, Riaño-Pachón DM, Roberts AW, Sato Y, Scheller HV, Schulz B, Schulz C, Shakirov EV, Shibagaki N, Shinohara N, Shippen DE, Sørensen I, Sotooka R, Sugimoto N, Sugita M, Sumikawa N, Tanurdzic M, Theißen G, Ulvskov P, Wakazuki S, Weng J, Willats WWGT, Wipf D, Wolf PG, Yang L, Zimmer AD, Zhu Q, Mitros T, Hellsten U, Loqué D, Otillar R, Salamov A, Schmutz J, Shapiro H, Lindquist E, Lucas S, Rokhsar D, Grigoriev IV (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bornberg-Bauer E, Albà MM (2013) Dynamics and adaptive benefits of modular protein evolution. Curr Opin Struct Biol 23:459–466

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue S, Ichiro Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304.e15

    Article  CAS  PubMed  Google Scholar 

  • Brown CJ, Johnson AK, Daughdrill GW (2010) Comparing models of evolution for ordered and disordered proteins. Mol Biol Evol 27:609–621

    Article  CAS  PubMed  Google Scholar 

  • Caldwell R, Lin YX, Zhang R (2015) Comparisons between Arabidopsis thaliana and Drosophila melanogaster in relation to coding and noncoding sequence length and gene expression. Int J Genom 2015:13. https://doi.org/10.1155/2015/269127

    Article  CAS  Google Scholar 

  • Camps M, Herman A, Loh E, Loeb LA (2007) Genetic constraints on protein evolution. Crit Rev Biochem Mol Biol 42:313–326

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Liu R, Gallie DR (2013) The unique evolution of the programmed cell death 4 protein in plants. BMC Evol Biol 13:199

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheng F, Wu J, Cai X, Liang J, Freeling M, Wang X (2018) Differences in polyploid plants. Nat Plants. https://doi.org/10.1038/s41477-018-0136-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Dangwal M, Malik G, Kapoor S, Kapoor M (2013) De-novo methyltransferase, OsDRM2, interacts with the ATP-dependent RNA helicase, OseIF4A, in Rice. J Mol Biol 16:2853–2866

    Article  CAS  Google Scholar 

  • Dangwal M, Kapoor S, Kapoor M (2014) The PpCMT chromomethylase affects cell growth and interacts with the homolog of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens. Plant J 77:589–603

    Article  CAS  PubMed  Google Scholar 

  • Fesenko I, Khazigaleeva R, Kirov I, Kniazev A, Glushenko O, Babalyan K, Arapidi G, Shashkova T, Butenko I, Zgoda V, Anufrieva K, Seredina A, Filippova A, Govorun V (2017) Alternative splicing shapes transcriptome but not proteome diversity in Physcomitrella patens. Sci Rep 7:1–14

    Article  CAS  Google Scholar 

  • Forslund K, Sonnhammer ELL (2012) Evolution of protein domain architectures. In: Anisimova M (ed) Evolutionary genomics. Methods in molecular biology (methods and protocols). Humana Press, New York, pp 187–216

    Google Scholar 

  • Gu Z, Cavalcanti A, Chen F-C, Bouman P, Li W-H (2002) Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evol 19:256–262

    Article  CAS  PubMed  Google Scholar 

  • Hackbusch J, Richter K, Muller J, Salamini F, Uhrig JF (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci 102:4908–4912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19:929–949

    Article  CAS  PubMed  Google Scholar 

  • Hedrick UP, Booth NO (1907) Mendelian characters in tomato. Proc Am Soc Hortic Sci 5:19–24

    Google Scholar 

  • Huang L, Schiefelbein J (2015) Conserved gene expression programs in developing roots from diverse plants. Plant Cell 27:2119–2132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Z, Van Houten J, Gonzalez G, Xiao H, Van Der Knaap E (2013) Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genom 288:111–129

    Article  CAS  Google Scholar 

  • Hughes AL (2002) Adaptive evolution after gene duplication. Trends Genet 18:433–434

    Article  CAS  PubMed  Google Scholar 

  • Hunt BG, Ometto L, Wurm Y, Shoemaker D, Yi SV, Keller L, Goodisman MAD (2011) Relaxed selection is a precursor to the evolution of phenotypic plasticity. Proc Natl Acad Sci 108:15936–15941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jian-ping H, Hong-ling L, Ying C (2012) Genome-wide analysis of ovate family proteins in Arabidopsis. J Northeast Agric Univ (English Ed) 19:49–59

    Article  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, Depamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  CAS  PubMed  Google Scholar 

  • Jonathan Shaw A, Devos N, Liu Y, Cox CJ, Goffinet B, Flatberg KI, Shaw B (2016) Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss). Ann Bot 118:185–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  • Kersting AR, Bornberg-Bauer E, Moore AD, Grath S (2012) Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution. Genome Biol Evol 4:316–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiraga J, Mackiewicz P, Mackiewicz D, Kowalczuk M, Biecek P, Polak N, Smolarczyk K, Dudek MR, Cebrat S (2007) The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms. BMC Genom 8:163

    Article  CAS  Google Scholar 

  • Ku HM, Doganlar S, Chen KY, Tanksley SD (1999) The genetic basis of pear-shaped tomato fruit. Theor Appl Genet 99:844–850

    Article  CAS  Google Scholar 

  • Ku HM, Liu J, Doganlar S, Tanksley SD (2001) Exploitation of Arabidopsis-tomato synteny to construct a high-resolution map of the ovatecontaining region in tomato chromosome 2. Genome 44:470–475

    Article  CAS  PubMed  Google Scholar 

  • Kubiak K, Nowak W (2008) Molecular dynamics simulations of the photoactive protein nitrile hydratase. Biophys J 94:3824–3838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  PubMed  Google Scholar 

  • La Cour T, Kiemer L, Mølgaard A, Gupta R, Skriver K, Brunak S (2004) Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17:527–536

    Article  CAS  PubMed  Google Scholar 

  • Lei G, Shen M, Li ZG, Zhang B, Duan KX, Wang N, Cao YR, Zhang WK, Ma B, Ling HQ, Chen SY, Zhang JS (2011) EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant Cell Environ 34:1678–1692

    Article  CAS  PubMed  Google Scholar 

  • Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12:1048–1059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Wu L-Q, Zheng W-Y, Wang R-F, Yang L-X (2015) Genome-wide identification of MicroRNAs responsive to high temperature in rice (Oryza sativa) by high-throughput deep sequencing. J Agron Crop Sci 201:379–388

    Article  CAS  Google Scholar 

  • Lipman DJ, Wilbur WJ (1991) Modelling neutral and selective evolution of protein folding. Proc Biol Sci 245:7–11

    Article  CAS  PubMed  Google Scholar 

  • Little DP, Moran RC, Brenner ED, Stevenson DW (2007) Nuclear genome size in Selaginella. Genome 50:351–356

    Article  PubMed  Google Scholar 

  • Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci 99:13302–13306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu D, Sun W, Yuan Y, Zhang N, Hayward A, Liu Y, Wang Y (2014) Phylogenetic analyses provide the first insights into the evolution of OVATE family proteins in land plants. Ann Bot 113:1219–1233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Y, Yang C, He Y, Tian Z, Li J (2017) Rice OVATE family protein 6 regulates plant development and confers resistance to drought and cold stresses. J Exp Bot 68:4885–4898

    Article  CAS  PubMed  Google Scholar 

  • Malik G, Dangwal M, Kapoor S, Kapoor M (2012) Role of DNA methylation in growth and differentiation in Physcomitrella patens and characterization of cytosine DNA methyltransferases. FEBS J 279(21):4081–4094

    Article  CAS  PubMed  Google Scholar 

  • Marron AO, Akam M, Walker G (2012) Nitrile hydratase genes are present in multiple eukaryotic supergroups. PLoS ONE 7:1–10

    Article  CAS  Google Scholar 

  • Marsh JA, Teichmann SA (2010) How do proteins gain new domains? Genome Biol 11(7):126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43:W566–W570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra D, Shekhar S, Agrawal L, Chakraborty S, Chakraborty N (2017) Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defense pathways. Food Chem 221:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Moore AD, Björklund ÅK, Ekman D, Bornberg-Bauer E, Elofsson A (2008) Arrangements in the modular evolution of proteins. Trends Biochem Sci 33:444–451

    Article  CAS  PubMed  Google Scholar 

  • Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N (2009) Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136:2433–2444

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka N, Yamashita A, Kurisu R, Watari Y, Ishizuna F, Tsutsumi N, Ishizaki K, Kohchi T, Arimura SI (2017) DRP3 and ELM1 are required for mitochondrial fission in the liverwort Marchantia polymorpha. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  • Neduva V, Russell RB (2005) Linear motifs: evolutionary interaction switches. FEBS Lett 579:3342–3345

    Article  CAS  PubMed  Google Scholar 

  • Nickrent DL, Parkinson CL, Palmer JH, Duff RJ (2000) Multigene phylogeny of land plants with special reference to bryophytes and the earlist land plants. Mol Biol Evol 17:1885–1895

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama R, Mizuno H, Okada S, Yamaguchi T, Takenaka M, Fukuzawa H, Ohyama K (1999) Two mRNA species encoding calcium-dependent protein kinases are differentially expressed in sexual organs of Marchantia polymorpha through alternative splicing. Plant Cell Physiol 40:205–212

    Article  CAS  PubMed  Google Scholar 

  • Okano Y, Aono N, Hiwatashi Y, Murata T, Nishiyama T, Ishikawa T, Kubo M, Hasebe M (2009) A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc Natl Acad Sci USA 106:16321–16326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ortiz-Ramírez C, Hernandez-Coronado M, Thamm A, Catarino B, Wang M, Dolan L, Feijó JAA, Becker JDD (2016) A transcriptome atlas of Physcomitrella patens provides insights into the evolution and development of land plants. Mol Plant 9:205–220

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE, 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Price HC, Drinkard AW (1908) Inheritance in tomato hybrids. Va Agric Exp Stn Bull 177:17–53

    Google Scholar 

  • Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456

    Article  CAS  PubMed  Google Scholar 

  • Rathore P, Geeta R, Das S (2016) Microsynteny and phylogenetic analysis of tandemly organized miRNA families across five members of Brassicaceae reveals complex retention and loss history. Plant Sci 247:35–48

    Article  CAS  PubMed  Google Scholar 

  • Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, Van De Peer Y, Reski R (2007) An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol 7:1–10

    Article  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto SI, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Sung HC, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van De Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  • Renzaglia KS, Duff RJT, Nickrent DL, Garbary DJ (2000) Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philos Trans R Soc Lond B 355:769–793

    Article  CAS  Google Scholar 

  • Schmitz AJ, Begcy K, Sarath G, Walia H (2015) Rice ovate family protein 2 (OFP2) alters hormonal homeostasis and vasculature development. Plant Sci 241:177–188

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RM, Dayhoff MO (1979) Matrices for detecting distant relationships. Atlas Protein Seq Struct 5:353–358

    Google Scholar 

  • Schween G, Gorr G, Hohe A, Reski R (2003) Unique tissue-specific cell cycle in Physcomitrella. Plant Biol 5:50–58

    Article  Google Scholar 

  • Shekhar S, Mishra D, Gayali S, Buragohain AK, Chakraborty S, Chakraborty N (2016) Comparison of proteomic and metabolomic profiles of two contrasting ecotypes of sweetpotato (Ipomoea batata L.). J Proteom 143:306–317

    Article  CAS  Google Scholar 

  • Singh S, Das S, Geeta R (2018) A segmental duplication in the common ancestor of Brassicaceae is responsible for the origin of the paralogs KCS6-KCS5, which are not shared with other angiosperms. Mol Phylogenet Evol 126:331–345

    Article  CAS  PubMed  Google Scholar 

  • Smith NG, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415:1022–1024

    Article  CAS  PubMed  Google Scholar 

  • Subba P, Kumar R, Gayali S, Shekhar S, Parveen S, Pandey A, Datta A, Chakraborty S, Chakraborty N (2013) Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics 13:1973–1992

    Article  CAS  PubMed  Google Scholar 

  • Szövényi P, Rensing SA, Lang D, Wray GA, Shaw AJ (2011) Generation-biased gene expression in a bryophyte model system. Mol Biol Evol 28:803–812

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S (2012) Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci 109:19333–19338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Temsch EM, Greilhuber J, Krisai R (1998) Genome size in Sphagnum (peat moss). Bot Acta 111:325–330

    Article  Google Scholar 

  • Temsch E, Greilhuber J, Krisai R (2010) Genome size in liverworts. Preslia 82:63–80

    Google Scholar 

  • Vandromme M, Gauthier-Rouviere C, Lamb N, Fernandez A (1996) Regulation of transcription factor localization: fine tuning of gene expression. Trends Biochem Sci 21:59–64

    Article  CAS  PubMed  Google Scholar 

  • Virgili G, Frank F, Feoktistova K, Sawicki M, Sonenberg N, Fraser CS, Nagar B (2013) Structural analysis of the DAP5 MIF4G domain and its interaction with eIF4A. Structure 21:517–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Vucetic S, Xie H, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 6:1899–1916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S, Chang Y, Guo J, Chen J-G (2007) Arabidopsis ovate family protein 1 is a transcriptional repressor that suppresses cell elongation. Plant J 50:858–872

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Chang Y, Guo J, Zeng Q, Ellis BE, Chen JG (2011) Arabidopsis ovate family proteins, a novel transcriptional repressor family, control multiple aspects of plant growth and development. PLoS ONE 6(8):e23896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S, Chang Y, Ellis B (2016) Overview of OVATE FAMILY PROTEINS, a novel class of plant-specific growth regulators. Front Plant Sci 7:1–8

    PubMed  PubMed Central  Google Scholar 

  • Weng J-K, Tanurdžić M, Chapple C (2005) Functional analysis and comparative genomics of expressed tags from the lycophyte Selaginella moellendorffii. BMC Genom 6:85

    Article  CAS  Google Scholar 

  • Xu L, Massagué J (2004) Nucleocytoplasmic shuttling of signal transducers. Nat Rev Mol Cell Biol 5:209–219

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Shen W, He Y, Tian Z, Li J (2016) OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice. PLoS Genet 12:1–15

    CAS  Google Scholar 

  • Yu H, Jiang W, Liu Q, Zhang H, Piao M, Chen Z, Bian M (2015) Expression pattern and subcellular localization of the ovate protein family in rice. PLoS ONE 10:1–19

    Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

  • Zhang L, Zhang X, Ju H, Chen J, Wang S, Wang H, Zhao Y, Chang Y (2016) Ovate family protein1 interaction with BLH3 regulates transition timing from vegetative to reproductive phase in Arabidopsis. Biochem Biophys Res Commun 470:492–497

    Article  CAS  PubMed  Google Scholar 

  • Zhong B, Sun L, Penny D (2015) The origin of land plants: a phylogenomic perspective. Evol Bioinform 11:137–141

    Article  CAS  Google Scholar 

  • Zhu Y, Chen L, Zhang C, Hao P, Jing X, Li X (2017) Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii. BMC Genom 18:1–15

    Article  Google Scholar 

Download references

Acknowledgements

The research has been supported and sponsored by the UGC under the UGC Dr. D.S. Kothari Post-Doctoral Fellowship Scheme to MD (Award Letter No.F.4-2/2006 (BSR)/BL/16-17/0032).

Author information

Authors and Affiliations

Authors

Contributions

MD compiled the data and performed analysis. MD and SD drafted the Manuscript.

Corresponding author

Correspondence to Sandip Das.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dangwal, M., Das, S. Identification and Analysis of OVATE Family Members from Genome of the Early Land Plants Provide Insights into Evolutionary History of OFP Family and Function. J Mol Evol 86, 511–530 (2018). https://doi.org/10.1007/s00239-018-9863-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-018-9863-7

Keywords

Navigation